
Efficient and Provable Effective Resistance Computation on
Large Graphs: an Index-based Approach

MEIHAO LIAO, JUNJIE ZHOU, and RONG-HUA LI, Beijing Institute of Technology, China
QIANGQIANG DAI, Beijing Institute of Technology, China

HONGYANG CHEN, Zhejiang Lab, China
GUOREN WANG, Beijing Institute of Technology, China

Effective resistance (ER) is a fundamental metric for measuring node similarities in a graph, and it finds

applications in various domains including graph clustering, recommendation systems, link prediction, and

graph neural networks. The state-of-the-art algorithm for computing effective resistance relies on a landmark

technique, which involves selecting a node that is easy to reach by all the other nodes as a landmark. The

performance of this technique heavily depends on the chosen landmark node. However, in many real-life

graphs, it is not always possible to find an easily reachable landmark node, which can significantly hinder the

algorithm’s efficiency. To overcome this problem, we propose a novel multiple landmarks technique which

involves selecting a set of landmark nodesV𝑙 such that the other nodes in the graph can easily reach any one

of a landmark node inV𝑙 . Specifically, we first propose several new formulas to compute ER with multiple

landmarks, utilizing the concept of Schur complement. These new formulas allow us to pre-compute and

maintain several small-sized matrices related toV𝑙 as a compact index. With this powerful index technique,

we demonstrate that both single-pair and single-source ER queries can be efficiently answered using a newly-

developedV𝑙 -absorbed random walk sampling orV𝑙 -absorbed push technique. Comprehensive theoretical

analysis shows that all proposed index-based algorithms achieve provable performance guarantees for both

single-pair and single-source ER queries. Extensive experiments on 5 real-life datasets demonstrate the high

efficiency of our multiple landmarks-based index techniques. For instance, our algorithms, with a 1.5 GB index

size, can be up to 4 orders of magnitude faster than the state-of-the-art algorithms while achieving the same

accuracy on a large road network.

CCS Concepts: • Networks → Network algorithms; • Mathematics of computing → Probabilistic
algorithms.

Additional Key Words and Phrases: graph proximity; effective resistance; approximate algorithm

ACM Reference Format:
Meihao Liao, Junjie Zhou, Rong-Hua Li, Qiangqiang Dai, Hongyang Chen, and Guoren Wang. 2024. Efficient

and Provable Effective Resistance Computation on Large Graphs: an Index-based Approach. Proc. ACM Manag.
Data 2, 3 (SIGMOD), Article 133 (June 2024), 27 pages. https://doi.org/10.1145/3654936

1 INTRODUCTION
Effective resistance [51] is a fundamental metric to measure node similarities of a graph. Given an

undirected graph G and two nodes 𝑠, 𝑡 , the effective resistance between 𝑠 and 𝑡 , denoted by 𝑟 (𝑠, 𝑡),

Authors’ addresses: Meihao Liao, mhliao@bit.edu.cn; Junjie Zhou, zjjyyyk@bit.edu.cn; Rong-Hua Li, lironghuabit@126.com,

Beijing Institute of Technology, Beijing, China; Qiangqiang Dai, qiangd66@gmail.com, Beijing Institute of Technology,

Beijing, China; Hongyang Chen, Zhejiang Lab, Zhejiang, China, dr.h.chen@ieee.org; Guoren Wang, wanggrbit@126.com,

Beijing Institute of Technology, Beijing, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2836-6573/2024/6-ART133

https://doi.org/10.1145/3654936

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 133. Publication date: June 2024.

https://doi.org/10.1145/3654936
https://doi.org/10.1145/3654936

133:2 Meihao Liao et al.

is equivalent to (up to a constant factor) the expected number of steps taken by a random walk

starting from 𝑠 , visiting 𝑡 , and coming back to 𝑠 [51]. Intuitively, a small 𝑟 (𝑠, 𝑡) indicates a high
similarity between 𝑠 and 𝑡 . This is because a small effective resistance implies that it is relatively

easy for a random walk starting from 𝑠 to reach 𝑡 , and vice versa. In other words, the nodes 𝑠 and

𝑡 are more likely to be well-connected or have similar neighbors in the graph, suggesting a high

degree of similarity between them. Compared to the classic shortest-path distance metric, effective

resistance is often more robust to noise, such as the deletion or insertion of a small number of

edges in a graph, as it considers all possible paths [28, 51].

The effective resistance metric has found wide applications in graph data management and

mining, including clustering in geo-social networks [47], long-tail recommendation systems [64],

link prediction in social networks [45], and anomaly detection in time-varying graphs [50]. Recently,

it has also been employed to analyze the over-squashing problem in graph neural networks

[32, 52]. These applications leverage the power of effective resistance to capture and quantify

node similarities in various graph-based scenarios.

Despite many efforts have been made to compute effective resistance in various studies [28, 42,

49, 62], there is still a lack of an efficient and provable algorithm for computing effective resistance

on large graphs. Recently, Peng et al. [42] proposed several efficient algorithms to compute single-

pair effective resistance using an 𝐿-step random-walk sampling technique. They proved that their

algorithms achieve sub-linear time complexity with respect to the size of the graph when the

underlying graph has bounded mixing time. Building upon this, Yang et al. [62] further improved

the algorithm by reducing the required length of 𝐿 while maintaining accuracy. However, a major

limitation of these algorithms is that when the desired absolute error is small, the random walk

length 𝐿 can still be very large. Additionally, these algorithms can only compute single-pair effective

resistance and would need to be invoked𝑛−1 times to compute the single-source effective resistance,

resulting in significant computational cost.

In addition to the work by Yang et al. [62], Liao et al. [28] proposed an alterative random walk

sampling algorithm for effective resistance computation, which utilizes a landmark node. This

algorithm is considered as the state-of-the-art for both single-pair and single-source effective

resistance caculations on large real-life graphs, as demonstrated in our experiments. The key idea

behind their algorithm is as follows: rather than performing random walks from the source node 𝑠

to the target node 𝑡 , random walks are conducted from both 𝑠 and 𝑡 towards an easily reachable

node (e.g., the highest-degree node), referred to as the landmark node. By terminating the random

walk once it hits the landmark node, the random walk sampling process can be executed quickly.

The estimated value of 𝑟 (𝑠, 𝑡) is then derived based on these random walks. Additionally, the

landmark idea is also extended to develop a random spanning tree sampling technique to compute

both single-pair and single-source effective resistance. A notable advantage of their algorithms for

computing single-pair effective resistance is that it only requires exploration of a small portion of

the graph, resulting in high efficiency. However, a limitation of this approach is that its performance

heavily relies on the selection of an appropriate landmark node. In cases where finding an easily

reachable landmark node is challenging, such as in road networks, their algorithm may yield poor

performance, as observed in our experiments.

To overcome this problem, in this work, we propose a novel multiple landmarks technique based

on several newly-developed effective resistance formulas. This technique allows us to strategically

select a set of multiple landmark nodes, denoted by V𝑙 , which in turn enables faster random

walk sampling. By leveraging the multiple landmarks technique, we develop a novel, efficient

and provable index-based approach to efficiently compute both the single-pair and single-source

effective resistance queries. More specifically, we first propose three new effective resistance

formulas with multiple landmarks, using a classic concept of Schur complement [12]. Based on these

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 133. Publication date: June 2024.

Efficient and Provable Effective Resistance Computation on Large Graphs: an Index-based Approach 133:3

new formulas, we can pre-compute and maintain several small-sized matrices, which are related to

the landmark node setV𝑙 , as a compact index. To construct the index, we develop two efficient and

provable Monte Carlo algorithms based on several interesting and newly-discovered probability

interpretations of the Schur complement. Armed with our indexing technique, we propose new and

provableV𝑙 -absorbed random walk andV𝑙 -absorbed push algorithms to efficiently answer both

the single-pair and single-source effective resistance queries. We show that the state-of-the-art

algorithm based on a single landmark node is a special case of our algorithms. In addition, we also

present a comprehensive theoretical analysis of our algorithms, and the results demonstrate that

all our algorithms can achieve an 𝜖-absolute error guarantee while taking only sub-linear time.

Finally, we conduct extensive experiments using 5 real-life graphs to evaluate our algorithms, and

the results show that our algorithms are substantially faster than the state-of-the-art algorithms

while maintaining the same accuracy level. To summarize, the main contributions of this paper are

as follows:

New theoretical results. We propose three new formulas to compute the effective resistance

with multiple landmarks V𝑙 . We propose novel and interesting probability interpretations of

the Schur complement of a graph w.r.t. the landmark nodes set V𝑙 . We believe that these novel

probability interpretations could be of independent interest. In addition, we also establish several

novel connections among effective resistance and three new concepts calledV𝑙 -absorbed random

walk,V𝑙 -absorbed push, andV𝑙 -rooted random spanning forest. We present detailed theoretical

analysis for all our algorithms and the results show that all of them can achieve provable accuracy

guarantee and take sub-linear running time.

Novel index-based algorithms.We propose novel index-based approaches to both single-pair

and single-source effective resistance computations. Specifically, we first propose several novel

techniques to construct the index, includingV𝑙 -absorbed randomwalk sampling,V𝑙 -rooted random

spanning forest sampling, and loop-erased random walk sampling. Then, armed with our index,

we develop two new V𝑙 -absorbed random walk and V𝑙 -absorbed push algorithms to efficiently

answer both the single-pair and single-source effective resistance queries. We show that the time

complexity of our query processing algorithms is strictly lower than the state-of-the-art (SOTA)

algorithms.

Extensive experiments.We conduct comprehensive experiments on 5 large real-life graphs to

evaluate our algorithms. The results show that by selecting a small set of landmark nodes, our

algorithms can be up to 4 orders magnitude faster than the SOTA algorithms for both single-pair and

single-source effective resistance computations, when achieving the same accuracy. For example,

on the Road-PA dataset (1.09 million nodes, 1.54 millon edges), our algorithms takes 0.19 and

30 seconds to achieve a relative error 0.05 for single-pair and single-source queries respectively,

while the SOTA algorithm consumes 184 and 2 × 10
4
seconds respectively. Additionally, the

results also show that our index can be constructed very efficiently and uses acceptable space. For

instance, on Road-PA dataset, our index can be built within 788 seconds using 1493 MB spaces. For

reproducible purpose, the source code of the paper can be found at https://github.com/mhliao0516/

EffectiveResistanceMultipleLandmark.

2 PRELIMINARIES

Notations and definitions. Let G = (V, E) be an undirected graph with |V| = 𝑛 nodes and

|E | =𝑚 edges. For a node 𝑢, denote byN(𝑢) the set of neighbor nodes of 𝑢. Let A be the adjacency

matrix of G and D be the diagonal degree matrix with D𝑢𝑢 = 𝑑 (𝑢) = |N (𝑢) |. Let L be the Laplacian

matrix of G defined as L = D−A. Without loss of generality, we assume that the graph is connected

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 133. Publication date: June 2024.

https://github.com/mhliao0516/EffectiveResistanceMultipleLandmark
https://github.com/mhliao0516/EffectiveResistanceMultipleLandmark

133:4 Meihao Liao et al.

Table 1. Frequently used notations.

Notation Description Notation Description

G = (V, E) An undirected graph G with node set V and edge set E G/V𝑙 , H The real and estimated Schur complement graph

D,A, L The degree matrix, adjacency matrix and Laplacian matrix of G, respectively G\V𝑙 The remaining graph by regarding V𝑙 as an extended node

P The probability transition matrix of G P𝑟 (P𝑓) The random walk (spanning forest) probability matrix

¯𝑑 , ΔG The average degree and the diameter of G p𝑢 The 𝑢-th row of the matrix P𝑟 (P𝑓)
V𝑙 ,U The landmark node set V𝑙 and the remaining node set U 𝜆 The spectral radius of the matrix P

LUV𝑙 (PUV𝑙) The sub-matrix of L (P) with rows indexed by U and columns indexed by V𝑙 𝜆V𝑙 The spectral radius of the matrix PUU
L/V𝑙 , LH The real and estimated Schur complement of the landmark node set V𝑙 𝜖 The absolute error threshold

(if the graph is disconnected, we can consider each connected component separately). For any

𝑛-nodes connected graph, the Laplacian matrix L has a rank 𝑛 − 1, thus the inverse of L does

not exist. Let 0 = 𝜇1 ≤ · · · ≤ 𝜇𝑛 be the eigenvalues of L, and u1, · · · , u𝑛 be the corresponding

eigenvectors. The eigen-decomposition of L is L =
∑𝑛

𝑖=2
𝜇𝑖u𝑖u𝑇𝑖 , because 𝜇1 = 0. Based on this, the

classic Moore-Penrose pseudo-inverse of L can be defined as L† =
∑𝑛

𝑖=2

1

𝜇𝑖
u𝑖u𝑇𝑖 . Given a graph G

and two nodes 𝑠, 𝑡 , the effective resistance (ER) between 𝑠 and 𝑡 is defined as

𝑟 (𝑠, 𝑡) = (L†)𝑠𝑠 + (L†)𝑡𝑡 − 2(L†)𝑠𝑡 . (1)

Eq. (1) is often used for computing the ER. However, as shown in [12], the ER can also be computed

by the so-called 𝑔-inverse of L. Specifically, the 𝑔-inverse of L, denoted by H, is a symmetric matrix

that satisfies LHL = L. Then, 𝑟 (𝑠, 𝑡) can be determined by the following formula:

𝑟 (𝑠, 𝑡) = (H)𝑠𝑠 + (H)𝑡𝑡 − 2(H)𝑠𝑡 . (2)

Notice that the 𝑔-inverse of L is not unique. Thus, we can compute effective resistance once we

construct any 𝑔-inverse of L. Random walk is a random process on graphs. In each step, a random

surfer jumps to the neighbor of the current node 𝑢 with probability
1

𝑑 (𝑢) . The probability transition

matrix is defined as P = D−1A. The commute time 𝑐 (𝑠, 𝑡) between two nodes 𝑠, 𝑡 is the expected

number of steps of the random walk starting from 𝑠 , visiting 𝑡 , and then coming back to 𝑠 . It is well

known that the commute time is closely related to ER, i.e., 𝑐 (𝑠, 𝑡) = 2𝑚 × 𝑟 (𝑠, 𝑡) [51]. The hitting
time ℎ(𝑠, 𝑡) between two nodes 𝑠, 𝑡 is the expected number of steps of the random walk starting

from 𝑠 and visiting 𝑡 for the first time. Similarly, the hitting time ℎ(𝑠,V𝑙) is the expected number of

steps of the random walk starting from 𝑠 and visiting a node setV𝑙 for the first time.

Let L𝑣 be a sub-matrix of L which is obtained by deleting the 𝑣-th row and the 𝑣-th column of L.
Unlike L, the inverse of L𝑣 exists for any node 𝑣 . Recently, Liao et al. [28] shows that ER can also be

computed based on the matrix L𝑣 :

𝑟 (𝑠, 𝑡) = (L−1

𝑣)𝑠𝑠 + (L−1

𝑣)𝑡𝑡 − 2(L−1

𝑣)𝑠𝑡 , 𝑢1, 𝑢2 ≠ 𝑣 ; (3)

𝑟 (𝑢, 𝑣) = (L−1

𝑣)𝑢𝑢 . (4)

Note that both Eq. (3) and Eq. (4) always hold for any node 𝑣 . This is because it is easy to verify that[
L−1

𝑣 0
0𝑇 0

]
is a 𝑔-inverse of L. Substituting the 𝑔-inverse into Eq. (2), we can obtain Eq. (3) and Eq. (4).

Moreover, similar to the shortest path distance, effective resistance is also a distance metric [12].

Notably, given three distinct nodes 𝑠, 𝑡, 𝑣 , the effective resistance satisfies 𝑟 (𝑠, 𝑣) + 𝑟 (𝑣, 𝑡) > 𝑟 (𝑠, 𝑡).
Based on Eq. (3) and Eq. (4), it is easy to derive that the difference is exactly 2(L−1

𝑣)𝑠𝑡 . Thus, to
compute 𝑟 (𝑠, 𝑡), the existing method [28] first compute the effective resistance distance from 𝑠, 𝑡

to the landmark node 𝑣 . Then, efficient approximate methods are designed to approximate the

difference 2(L−1

𝑣)𝑠𝑡 . Table 1 lists the notations that are frequently used in this paper.

Problem formulation. Based on the definition of ER, we formulate two ER computation problems

as follows. Note that we do not consider the problem of all-pairs ER computation, since it requires

𝑂 (𝑛2) space to store the results, which is clearly intractable for large graphs.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 133. Publication date: June 2024.

Efficient and Provable Effective Resistance Computation on Large Graphs: an Index-based Approach 133:5

V1

V4

V3
V2

V5

V6

V7

V8

V9

V11

V10

V12
V13

(a) G

2.79

V1

V4

V3
V22.76

2.79

2.84
1.33

1.33

1.37

1.37

0.11

0.09

(b) G/V𝑙

V5

V6

V7

V8

V9

V11

V10

V12
V13

VE

(c) G\V𝑙

Fig. 1. An illustrative example of a graph and its Schur
complement. (a) An example graph G with Laplacian
matrix L, a landmark node setV𝑙 = {𝑣1, 𝑣2, 𝑣3, 𝑣4} is
chosen; (b) The Schur complement graph G/V𝑙 with
Laplacian matrix L/V𝑙 = LV𝑙V𝑙

− LV𝑙UL
−1

UULUV𝑙
;

(c) The remaining graph G\V𝑙 which is obtained by
regarding V𝑙 as an extended node 𝑣𝐸 , that LUU is
matrix obtained by removing the row and column
indexed by 𝑣𝐸 from the Laplacian matrix of G\V𝑙 .

V1

V4

V3
V2

V5

V6

V7

V8

V9

V11

V10

V12
V13

(0.61, 0.23, 0.11, 0.05)

(0.24, 0.62, 0.05, 0.09)

(0.09, 0.62, 0.05, 0.24)

(0.05, 0.24, 0.11, 0.61) (0.04, 0.09, 0.26, 0.60)

(0.08, 0.04, 0.68, 0.19)

(0.09, 0.03, 0.78, 0.09)

(0.60, 0.09, 0.26, 0.04)

(0.19, 0.04, 0.68, 0.08)

(a) p𝑢 for𝑢 ∈ U

V1

V4

V3
V2

V5

V6

V7

V8

V9

V11

V10

V12
V13

(3, 1, 0, 0)

(0, 4, 0, 0)

(0, 4, 0, 0)

(0, 0, 0, 4) (0, 0, 0, 4)

(0, 0, 3, 1)

(0, 0, 4, 0)

(3, 1, 0, 0)

(1, 0, 3, 0)

(b) Random walk instances

(c) Random spanning forest instances

2.50

V1

V4

V3
V22.00

2.00

1.50
1.50

1.00

1.00

1.25

1.25
1.00

1.00
1.00

(d) Estamted graph H

Fig. 2. Illustration of several important concepts, con-
tinued. (a) The probability vector p𝑢 for 𝑢 ∈ U. (b) 4

possible randomwalk instances. Suppose that we sam-
ple 4 random walks, the [3, 1, 0, 0]𝑇 vector depicted
near 𝑣5 means that 3 (1, 0, 0) of them hitsV𝑙 by 𝑣1 (𝑣2,
𝑣3, 𝑣4), respectively. (c) 4 possible random spanning
forests instances. (d) Based on the random walk and
random spanning forests instances, we can obtain the
same estimated graphH according to Lemma 3.8.

Definition 2.1 (Single-pair ER computation). Given an undirected graph G = (V, E) and two

nodes 𝑠, 𝑡 with 𝑠 ≠ 𝑡 , the single-pair ER computation problem is to calculate 𝑟 (𝑠, 𝑡).
Definition 2.2 (Single-source ER computation). Given an undirected graph G = (V, E) and a

source node 𝑠 , the single-source ER computation problem is to calculate 𝑟 (𝑠, 𝑡) for every 𝑡 ∈ V .

Note that by definition, computing the exact effective resistance requires calculating the matrix

inverse (or pseudo-inverse) which is typically intractable for large graphs. As a result, existing solu-

tions often focus on deriving an 𝜖-estimation of the effective resistance [28, 42, 62], i.e., outputting

an approximate effective resistance 𝑟 (𝑠, 𝑡) that satisfies |𝑟 (𝑠, 𝑡) − 𝑟 (𝑠, 𝑡) | ≤ 𝜖 with a high probability

(e.g., the failure probability is smaller than 0.01). In this work, we also focus on developing efficient

𝜖-estimation algorithms for both single-pair and single-source ER computation. Below, we first

establish several new effective resistance formulas with multiple landmark nodes, based on which

we will develop a powerful index-based approach to compute single-pair and single-source ER

queries.

3 NEW EFFECTIVE RESISTANCE FORMULAS
Recall that Liao et al. [28] proposed an effective resistance (ER) formula based on the matrix L𝑣
that involves only one landmark node 𝑣 . A natural question arises: can we extend their formula to

handle scenarios with multiple landmark nodes? Note that solving this problem is quite nontrivial

as it needs to incorporate the concept of Schur complement. Specifically, letV𝑙 ⊂ V be a small

set of landmark nodes (e.g., |V𝑙 | ≤ 100), andU = V\V𝑙 be the set of remaining nodes. Denote by

LUU the sub-matrix obtained by deleting the rows and columns indexed by the landmark node

setV𝑙 . Then, L can be represented as L =

[
LUU LUV𝑙

LV𝑙U LV𝑙V𝑙

]
. Based on this block representation, we

formally define the Schur complement of the landmark node setV𝑙 , denoted by L/V𝑙 , as follows.

Definition 3.1. For a node setV𝑙 , the Schur complement ofV𝑙 is L/V𝑙 ≜ LV𝑙V𝑙
−LV𝑙UL

−1

UULUV𝑙
.

New ER formulas. It is well-known that the Schur complement L/V𝑙 is also the Laplacian matrix

of a weighted graph G/V𝑙 [14]. Here we give an illustrative example. As shown in Fig. 1(a), G is

an example graph with 13 nodes. The Laplacian matrix of G is L. By selecting a landmark node

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 133. Publication date: June 2024.

133:6 Meihao Liao et al.

setV𝑙 = {𝑣1, 𝑣2, 𝑣3, 𝑣4}, and suppose thatU is the remaining node set, we can compute the Schur

complement L/V𝑙 respectively. Then, L/V𝑙 is the Laplacian matrix of a weighted graph G/V𝑙

which is illustrated in Fig. 1(b), whose node set is exactlyV𝑙 . By consideringV𝑙 as an extended node

𝑣𝐸 , we also obtain a graph G\V𝑙 (Fig. 1(c)), where LUU is the matrix obtained by removing the row

and column indexed by 𝑣𝐸 from the Laplacian matrix of G\V𝑙 . Let (L/V𝑙)† be the pseudo-inverse
of L/V𝑙 . Similar to L𝑣 , the inverse of LUU also exists. Below, we construct a new 𝑔-inverse of L
with the pseudo-inverse of the Schur complement L/V𝑙 . Due to space limits, all the missing proofs

can be found in the full version of this paper [30].

Lemma 3.2. Given a landmark node setV𝑙 and the remaining node setU = V\V𝑙 , a 𝑔-inverse of
L, denoted by 𝐻 , can be constructed as:

H =

[
I L−1

UULUV𝑙

0 I

] [
L−1

UU 0

0 (L/V𝑙)†
] [

I 0

LV𝑙UL
−1

UU I

]
=

[
L−1

UU + L
−1

UULUV𝑙
(L/V𝑙)†LV𝑙UL

−1

UU −L−1

UULUV𝑙
(L/V𝑙)†

−(L/V𝑙)†L−1

V𝑙ULUU (L/V𝑙)†

]
.

(5)

Based on Lemma 3.2 and Eq. (1), we present new formulas for ER computation as follows:

Lemma 3.3. (New effective resistance formulas) Given a landmark node setV𝑙 and the remaining
node setU = V\V𝑙 , the effective resistance between any two nodes can be computed by the following
formulas.
(1) For 𝑢1, 𝑢2 ∈ U, we have

𝑟 (𝑢1, 𝑢2) = (L−1

UU)𝑢1𝑢1
+ (L−1

UU)𝑢2𝑢2
− 2(L−1

UU)𝑢1𝑢2

+ (L−1

UULUV𝑙
(L/V𝑙)†LV𝑙UL

−1

UU)𝑢1𝑢1

+ (L−1

UULUV𝑙
(L/V𝑙)†LV𝑙UL

−1

UU)𝑢2𝑢2

− 2(L−1

UULUV𝑙
(L/V𝑙)†LV𝑙UL

−1

UU)𝑢1𝑢2
;

(6)

(2) For 𝑢 ∈ U, 𝑣 ∈ V𝑙 , we have

𝑟 (𝑢, 𝑣) = (L−1

UU)𝑢𝑢 + ((L/V𝑙)
†)𝑣𝑣

+ (L−1

UULUV𝑙
(L/V𝑙)†LV𝑙UL

−1

UU)𝑢𝑢
− 2(L−1

UULUV𝑙
(L/V𝑙)†)𝑢𝑣 ;

(7)

(3) For 𝑣1, 𝑣2 ∈ V𝑙 , we have

𝑟 (𝑣1, 𝑣2) = ((L/V𝑙)†)𝑣1𝑣1
+ ((L/V𝑙)†)𝑣2𝑣2

− 2((L/V𝑙)†)𝑣1𝑣2
.

(8)

By Lemma 3.3, to compute the effective resistance for any two nodes, it is sufficient to calculate

(i) the matrix L−1

UULUV𝑙
(note that there is no need to repeatedly compute LV𝑙UL

−1

UU , because

LV𝑙UL
−1

UU = (L−1

UULUV𝑙
)𝑇); (ii) the pseudo-inverse of the Schur complement: (L/V𝑙)†; and (iii)

the inverse of the Laplacian submatrix: L−1

UU . By Definition 3.1, the Schur complement L/V𝑙 is

closely related to the matrix L−1

UULUV𝑙
. Note the Schur complement is a |V𝑙 | × |V𝑙 | matrix and |V𝑙 |

is often small (e.g., |V𝑙 | ≤ 100), thus (L/V𝑙)† can be easily computed after obtaining the matrix

L/V𝑙 . As a consequence, for both (1) and (2), the key is to determine the matrix L−1

UULUV𝑙
. Below,

we propose several interesting probability interpretations of the matrix L−1

UULUV𝑙
, based on which

we will develop several novel and efficient sampling techniques to estimate such a matrix.

Novel probability interpretations of L−1

UULUV𝑙
. We first give a random walk interpretation

for each element of the matrix L−1

UULUV𝑙
. For a given set of landmark nodes V𝑙 , we define a

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 133. Publication date: June 2024.

Efficient and Provable Effective Resistance Computation on Large Graphs: an Index-based Approach 133:7

V𝑙 -absorbed random walk as a random walk that terminates once it reaches any node in the set

V𝑙 . That is to say, for aV𝑙 -absorbed random walk starting from a node 𝑢 ∈ U, it must stop at a

node 𝑣 ∈ V𝑙 . Let 𝜏V𝑙
[𝑢1, 𝑢2] be the expected number of visits to node 𝑢2 in a V𝑙 -absorbed walk

starting from node 𝑢1. Denote by PUU a sub-matrix of the probability transition matrix P = D−1A
obtained by removing the rows and columns indexed by the setV𝑙 . Then, by definition, we have

𝜏V𝑙
[𝑢1, 𝑢2] =

∑∞
𝑘=0
(P𝑘UU)𝑢1𝑢2

. Specifically, (P𝑘UU)𝑢1𝑢2
is the probability that a V𝑙 -random walk

starting from 𝑢1 visits 𝑢2 at the 𝑘-th step. Based on this, we have the following results.

Lemma 3.4. (L−1

UU)𝑢1𝑢2
=

𝜏V𝑙 [𝑢1,𝑢2]
𝑑 (𝑢2) .

Then, by Lemma 3.4, we can derive an interesting probability interpretation of the matrix

L−1

UULUV𝑙
as follows.

Lemma 3.5. (V𝑙 -absorbed random walk interpretation) Given a node 𝑢 ∈ U and a node 𝑣 ∈ V𝑙 , the
𝑢, 𝑣-th element of the matrix −(L−1

UULUV𝑙
)𝑢𝑣 is the probability 𝑝𝑟𝑢𝑣 that aV𝑙 -absorbed random walk

starts from 𝑢 and terminates at the node 𝑣 ∈ V𝑙 .

Lemma 3.5 indicates that the matrix L−1

UULUV𝑙
can be efficiently estimated by usingV𝑙 -random

walk sampling technique. Below, we further propose a different probability interpretation for

L−1

UULUV𝑙
based on a concept of random spanning forest.

A spanning forest is a subgraph of G with no cycles. For each connected component of a spanning

forest, we specify a node as the root node in a rooted spanning forest. The set of all root nodes is

called the root set R. For convenience, we let the root set be the landmark node setV𝑙 , i.e., R = V𝑙 .

For a tree T with a root node 𝑣 , we call that “𝑢 is rooted at 𝑣” for each node 𝑢 ∈ T . A random

spanning forest with a prescribed root set V𝑙 is a spanning forest uniformly sampled from all

spanning forests of G with the root setV𝑙 . With this concepts, we can derive the following results.

Lemma 3.6. (V𝑙 -rooted random spanning forest interpretation) Given a node 𝑢 ∈ U and a node
𝑣 ∈ V𝑙 , the 𝑢, 𝑣-th element −(L−1

UULUV𝑙
)𝑢𝑣 is the probability 𝑝 𝑓

𝑢𝑣 that in a random spanning forest F
with root setV𝑙 , 𝑢 is rooted at 𝑣 in a tree of F .

Note that each row of the matrix −L−1

UULUV𝑙
sums up to 1, this is because a random walk starts

from a node 𝑢 ∈ U must stop when hitting a node 𝑣 ∈ V𝑙 , thus the probability
∑

𝑣∈V𝑙
𝑝𝑟𝑢𝑣 = 1.

Similarly, in a random spanning forest with root set V𝑙 , each node 𝑢 ∈ U must be root at a

certain landmark node 𝑣 ∈ V𝑙 , the probability
∑

𝑣∈V𝑙
𝑝
𝑓
𝑢𝑣 = 1. We use P𝑟 ∈ R |U |× |V𝑙 |

to denote the

random walk probability matrix where (P𝑟 ∈ R |U |× |V𝑙 |)𝑢𝑣 = 𝑝𝑟𝑢𝑣 , and P𝑓 ∈ R |U |× |V𝑙 |
to denote the

random spanning forest probability matrix where (P𝑓 ∈ R |U |× |V𝑙 |)𝑢𝑣 = 𝑝
𝑓
𝑢𝑣 . Therefore, we have

P𝑟 = P𝑓 = −L−1

UULUV𝑙
by Lemma 3.5 and Lemma 3.6. Then, we can further obtain three new ER

formulas based on the matrices P𝑟 and P𝑓 .

Lemma 3.7. Let p𝑢 be the 𝑢-th row of the matrix P𝑟 (P𝑓) for 𝑢 ∈ U, where p𝑢 (𝑣) is the probability
that a random walk from 𝑢 hits 𝑣 ∈ V𝑙 (the probability that in a random spanning forest with root
setV𝑙 , 𝑢 is rooted at 𝑣). Let e𝑢 be a one-hot vector such that the element indexed by 𝑢 is 1 and other
elements are 0. Then, we have:
(1) For 𝑢1, 𝑢2 ∈ U, we have

𝑟 (𝑢1, 𝑢2) = (e𝑢1
− e𝑢2

)𝑇 (L−1

UU) (e𝑢1
− e𝑢2

)

+ (p𝑢1
− p𝑢2

)𝑇 (L/V𝑙)† (p𝑢1
− p𝑢2

);
(9)

(2) For 𝑢 ∈ U, 𝑣 ∈ V𝑙 , we have

𝑟 (𝑢, 𝑣) = e𝑇𝑢 L
−1

UUe𝑢 + (p𝑢 − e𝑣)
𝑇 (L/V𝑙)† (p𝑢 − e𝑣); (10)

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 133. Publication date: June 2024.

133:8 Meihao Liao et al.

(3) For 𝑣1, 𝑣2 ∈ V𝑙 , we have

𝑟 (𝑣1, 𝑣2) = (e𝑣1
− e𝑣2

)𝑇 (L/V𝑙)† (e𝑣1
− e𝑣2

) . (11)

A running example. Fig. 2(a) illustrates the probability vector p𝑢 for 𝑢 ∈ U. For example,

p𝑣5
= [0.61, 0.23, 0.11, 0.05]𝑇 means that aV𝑙 -absorbed random walk from 𝑣5 has probability 0.61

(0.23, 0.11, 0.05) to hitV𝑙 by 𝑣1 (𝑣2, 𝑣3, 𝑣4). Also, in a uniformly sampled random spanning forest

with root setV𝑙 , the probability that 𝑣5 is rooted at 𝑣1 (𝑣2, 𝑣3, 𝑣4) is 0.61 (0.23, 0.11, 0.05). This is

intuitive because 𝑣1 is nearer to 𝑣5 than other landmark nodes.

Fig. 2(a) and Fig. 2(b) illustrate the randomwalk and random spanning forests sampling techniques

described above. Specifically, when sampling 4 random walks from each node 𝑢 ∈ U, suppose

that the random walk starts from 𝑣5 hits V𝑙 by 𝑣1 (𝑣2, 𝑣3, 𝑣4) for 3 (1, 0, 0) times (Fig. 2(b)), then

[0.75, 0.25, 0, 0]𝑇 is an approximate of p𝑣5
. Similarly, in the 4 random spanning forests sampled in

Fig. 2(b), in 3 (1, 0, 0) of them 𝑣5 is rooted at 𝑣1 (𝑣2, 𝑣3, 𝑣4). Thus, we can also obtain an approximate

p𝑣5
([0.75, 0.25, 0, 0]𝑇) from the random spanning forest instances.

Novel probability interpretations of the Schur complement L/V𝑙 . Based on Lemma 3.5 and

Lemma 3.6, we can derive probability interpretations for the Schur complement L/V𝑙 = LV𝑙V𝑙
−

LV𝑙UL
−1

UULUV𝑙
. Note that LV𝑙UL

−1

UULUV𝑙
is a |V𝑙 | × |V𝑙 | matrix, we have (LV𝑙UL

−1

UULUV𝑙
)𝑣𝑖 𝑣𝑗 =

−(LV𝑙UP𝑟)𝑣𝑖 𝑣𝑗 =
∑

𝑢∈U, 𝑢∈N(𝑣𝑖) −𝑝𝑟𝑢𝑣𝑗 for any 𝑣𝑖 , 𝑣 𝑗 ∈ V𝑙 . In other words, the 𝑣𝑖 , 𝑣 𝑗 -th element of the

matrix −LV𝑙UL
−1

UULUV𝑙
is the sum of the probability of aV𝑙 -absorbed random walk starting from

𝑢 with 𝑢 ∈ U and 𝑢 ∈ N (𝑣𝑖) that hits the landmark node 𝑣 𝑗 ∈ V𝑙 . Since
∑

𝑣∈V𝑙
𝑝𝑟𝑢𝑣 = 1 for 𝑢 ∈ U,

we can derive that the 𝑣𝑖 -th row of the matrix sums up to −𝑑V𝑙
(𝑣𝑖), where 𝑑V𝑙

(𝑢) = 𝑑 (𝑢) − 𝑑U (𝑢)
denotes the number of nodes 𝑢 that satisfy 𝑢 ∈ V𝑙 and 𝑢 ∈ N (𝑣𝑖), and 𝑑U (𝑢) denotes the number

of nodes 𝑢 that meet 𝑢 ∈ U and 𝑢 ∈ N (𝑣𝑖). The Schur complement L/V𝑙 is also the Laplacian

matrix of a Schur complement graph, which we denote by G/V𝑙 . Similarly, the same statement

also holds for the spanning forest probability 𝑝𝑟𝑢𝑣 . Thus, together with the matrix LV𝑙V𝑙
, we can

derive probability interpretations of the Schur complement L/V𝑙 .

Lemma 3.8. (Probability interpretations of Schur complement) The Schur complement L/V𝑙 is the
Laplacian matrix of a weighted graph G/V𝑙 with node set V𝑙 , the degree of each node 𝑣 ∈ V𝑙 is
𝑑 (𝑣) −∑𝑢∈N(𝑣)∩U 𝑝𝑟𝑢𝑣 , the weight of each edge (𝑣𝑖 , 𝑣 𝑗) for 𝑣𝑖 , 𝑣 𝑗 ∈ V𝑙 is 1{𝑣𝑖 ∼ 𝑣 𝑗 } +

∑
𝑢∈N(𝑣𝑖)∩U 𝑝𝑟𝑢𝑣𝑗 ,

where 1{𝑣𝑖 ∼ 𝑣 𝑗 } is an indicator variable that equals 1 when 𝑣𝑖 and 𝑣 𝑗 are connected in the original
graph, equals 0 otherwise. The statement still holds when we replace 𝑝𝑟𝑢𝑣 with 𝑝

𝑓
𝑢𝑣 .

Note that Lemma 3.8 shows that we can easily construct the Schur complement L/V𝑙 based on the

probability matrix P𝑟 (or P𝑓). In the following section, we will apply such probability interpretations

to design an efficient sampling algorithm to compute the Schur complement. For example, based

on the random walk and random spanning forest samples illustrated in Fig. 2(b) and Fig. 2(c), we

can obtain a weighted, directed graphH as an estimated graph of G/V𝑙 according to Lemma 3.8,

as illustrated in Fig. 2(d).

Discussions. If there is only one landmark node 𝑣 inV𝑙 , then since for each random walk that hits

V𝑙 , it must hit 𝑣 , the probability 𝑝𝑟𝑢𝑣 = 1. According to Lemma 3.8, the Schur complement L/V𝑙 is 0.

Therefore, the pseudo-inverse (L/V𝑙)† is also 0. As a result, Eq. (5) degrades to:

H =

[
L−1

UU 0
0𝑇 0

]
. (12)

Then, the ER formula Eq. (3) and Eq. (4) can be recovered easily by Eq. (12), indicating that the

result established in [28] is a special case our results.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 133. Publication date: June 2024.

Efficient and Provable Effective Resistance Computation on Large Graphs: an Index-based Approach 133:9

4 SINGLE-PAIR ER COMPUTATION
In this section, we propose a novel index-based approach to compute single-pair ER based on the

theoretical results established in Section 3. Recall that the key to compute the ER is to compute

three matrices: (i) P𝑟 (or P𝑓), (ii) (L/V𝑙)†, and (iii) L−1

UU . The basic idea of our approach is as follows.

First, we pre-compute both P𝑟 (or P𝑓) and (L/V𝑙)† and maintain these two matrices as an index.

Clearly, such an index consumes 𝑂 (𝑛 × |V𝑙 |) space. Since |V𝑙 | is often a small constant, the index

only requires a small amount of additional space. Second, armed with the index, we can efficiently

process any single-pair ER query (e.g., 𝑟 (𝑠, 𝑡)) by computing at most three elements of L−1

UU (e.g.,

(L−1

UU)𝑠𝑠 , (L
−1

UU)𝑡𝑡 , and (L
−1

UU)𝑠𝑡) based on Lemma 3.7. Below, we first propose two efficient index

construction algorithms, followed by the query processing algorithms.

4.1 Index Construction Algorithms
Our index includes twomatrices P𝑟 (or P𝑓) and (L/V𝑙)†. To compute the matrix P𝑟 (P𝑓), it is identical
to calculate L−1

UULUV𝑙
by Lemma 3.5 and Lemma 3.6. Let p𝑣𝑖 be the 𝑣𝑖 -th column of the matrix P𝑟 ,

in which an element denotes the probability that aV𝑙 -absorbed random walk starting from a node

𝑢𝑖 ∈ U hits 𝑣𝑖 ∈ V𝑙 . We can compute p𝑣𝑖 by solving a linear system LUUp𝑣𝑖 = LUV𝑙
e𝑣𝑖 . Thus, a

basic method to compute P𝑟 (P𝑓) requires solving |V𝑙 | linear systems. After determining P𝑟 , we
can construct the Schur complement L/V𝑙 by Definition 3.1, and then compute its pseduo-inverse

by eigen-decomposition. Clearly, such a basic method is costly for large graphs, because it needs

to solve |V𝑙 | linear systems. Below, we propose two new and efficient Monte Carlo approaches to

estimate the probability matrix P𝑟 (P𝑓).

Index building byV𝑙 -absorbed randomwalk sampling. Based on theV𝑙 -absorbed randomwalk

interpretation (Lemma 3.5), we can construct the index matrices P𝑟 and (L/V𝑙)† byV𝑙 -absorbed

random walk sampling. We refer to such an alorithm as RwIndex. The detailed algorithm is outlined

in Algorithm 1. Specifically, RwIndex samples a number ofV𝑙 -absorbed random walk from each

node 𝑢 ∈ U, and uses the proportion of walks that hit 𝑣 ∈ V𝑙 as an estimation of (P𝑟)𝑢𝑣 (Lines 4-6).
Clearly, such an estimation is unbiased by Lemma 3.5. Similarly, by Lemma 3.8, RwIndex constructs
an unbiased estimator for each element of the Schur complement L/V𝑙 (Lines 7-11), resulting in

an estimated Laplacian matrix LH . After that, the algorithm computes the pseudo-inverse of the

matrix LH as the final estimation of (L/V𝑙)†. Note that although LH is an unbiased estimator of

L/V𝑙 , L
†
H is not necessarily an unbiased estimator of (L/V𝑙)†. However, this does not affect the

theoretical guarantee of our algorithm as analyzed below.

Theoretical analysis of RwIndex. To analyze the accuracy and complexity of our algorithm, we

need an additional concept, called 𝜖-spectral sparsifier, which is defined as follows:

Definition 4.1. (𝜖-spectral sparsifier) Given two undirected, unweighted graphs G,H with the

same number of nodes, let LH and LG be the Laplacian matrix of G andH . We callH an 𝜖-spectral

sparsifier if for any vector x, (1 − 𝜖)x𝑇LGx ≤ x𝑇LHx ≤ (1 + 𝜖)x𝑇LGx.

We first analyze the sample size needed for RwIndex to constructH as an 𝜖-spectral sparsifier

of the Schur complement graph G/V𝑙 , i.e. the matrix LH satisfies (1 − 𝜖)x𝑇LGx ≤ x𝑇LHx ≤
(1 + 𝜖)x𝑇 LGx. RwIndex constructs the approximated Schur complement graphH by adding edges

to the induced graph with node setV𝑙 when theV𝑙 -absorbed random walk sampled from a node

𝑢 ∈ U and 𝑢 is a neighbor of a node 𝑣 ∈ V𝑙 . According to Lemma 3.8,H is an unbiased estimator

of G/V𝑙 . We have the following Lemma.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 133. Publication date: June 2024.

133:10 Meihao Liao et al.

Algorithm 1: RwIndex
Input: Graph G, landmark node set V𝑙 , sample size 𝜔

Output: The estimated index matrices P̃𝑟 and L†H
1 P̃𝑟 ← 0; U ← V\V𝑙 ;

2 Let H be a subgraph of G induced by the node set V𝑙 ;

3 For each edge (𝑢, 𝑣) ∈ H, let 𝑤 (𝑢, 𝑣) = 1 be the weight of (𝑢, 𝑣) ;
4 for 𝑖 = 1 : 𝜔 do
5 for each node 𝑢 ∈ U do
6 Sample a V𝑙 -absorbed random walk from 𝑢; Suppose the terminated node is 𝑣 ∈ V𝑙 , then (P̃𝑟)𝑢𝑣 ← (P̃𝑟)𝑢𝑣 + 1

𝜔
;

7 for each node 𝑣 ∈ V𝑙 do
8 for each neighbor node 𝑢 ∈ N(𝑣) ∩ U do
9 if the V𝑙 -absorbed random walk sampled from 𝑢 terminates at 𝑣 then
10 If the edge (𝑢, 𝑣) ∈ H, 𝑤 (𝑢, 𝑣) ← 𝑤 (𝑢, 𝑣) + 1

𝜔
; Otherwise, create a new edge (𝑢, 𝑣) with weight

𝑤 (𝑢, 𝑣) ← 1

𝜔
;

11 Let LH be the Laplacian matrix of the weighted graph H;

12 Compute the pseudo-inverse L†H by eigen-decomposition;

13 return P̃𝑟 , L†H ;

Lemma 4.2. Let ΔG be the diameter of the graph G. When the sample size 𝜔 is larger than
𝑂 (ΔG |V𝑙 | log𝑛

𝜖2
), the approximated Schur complement graph H in RwIndex is an 𝜖-spectral sparsi-

fier of G/V𝑙 .

Based on Lemma 4.2, when the sample size 𝜔 ≥ 𝑂 (ΔG |V𝑙 | log𝑛

𝜖2
),H is an 𝜖-spectral sparsifier of

G/V𝑙 . We will show later in Section 4.2 that the computed P𝑟 and L†H is sufficient to support an

𝜖-estimation single-pair query efficiently if H is an 𝜖-spectral sparsifier of G/V𝑙 . Thus, we can

obtain the overall time complexity of RwIndex.

Lemma 4.3. The expected time complexity of RwIndex to obtain an 𝜖-spectral sparsifier of G/V𝑙 is

𝑂 (®1
𝑇 (I−PUU)−1®1ΔG |V𝑙 | log𝑛

𝜖2
).

In Lemma 4.3, ®1𝑇 (I−PUU)−1®1 is the sum of the expected running time of random walks fromU
to hitV𝑙 . This quantity is not very large whenV𝑙 is properly selected. For example, on a real-life

road network PowerGrid [24], ®1𝑇 (I − PUU)−1®1 is 71 × 𝑛 when choosing the 100 highest degree

nodes asV𝑙 . In practice, |V𝑙 | is often selected as a small number (i.e., |V𝑙 | ≤ 100). The diameter

of the graph G is also often not very large in real-world graphs. Thus, Algorithm 1 is efficient in

practice.

Index building by V𝑙 -rooted random spanning forest sampling. Likewise, based on the

V𝑙 -rooted random spanning forest interpretation (Lemma 3.6), we can derive the index matrices

P𝑓 and (L/V𝑙)† byV𝑙 -rooted random spanning forest sampling. We refer to such an algorithm as

RsfIndex. The detailed implementation can be found in the full-version of this paper [30]. First,

RsfIndex uniformly draws a set of V𝑙 -rooted random spanning forests using the classic Wilson

algorithm [60]. Note that here we need to slightly modify the originalWilson algorithm to obtain the

V𝑙 -rooted random spanning forests. The Wilson algorithm is based on the concept of loop-erased

random walk (LERW), in which all loops in the random walk trajectory are removed. Specifically,

the Wilson algorithm first fixes a node ordering. Then, the algorithm initializes a tree T = {𝑣}
with a root node 𝑣 and performs an LERW from the first node until it hits the tree T [28]. Once the

LERW hits any node in T , the LERW trajectory will be added into T . The algorithm processes

the nodes following the fixed node ordering, until all nodes are visited, a rooted spanning tree T
is generated uniformly [6, 28, 46, 60]. To generate aV𝑙 -rooted random spanning forest, we only

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 133. Publication date: June 2024.

Efficient and Provable Effective Resistance Computation on Large Graphs: an Index-based Approach 133:11

need to initialize the tree as T = V𝑙 and set the root set asV𝑙 , and then invoke the same LERW

procedure as the Wilson algorithm. By the results established in [4, 10, 43], such a modified Wilson

algorithm can generate a uniformlyV𝑙 -rooted random spanning forest.

Second, for each 𝑢 ∈ U, RsfIndex utilizes the proportion ofV𝑙 -rooted random spanning forests

in which 𝑢 is rooted at 𝑣 as an unbiased estimator of (P𝑓)𝑢𝑣 based on Lemma 3.6. Similar to

RwIndex, RsfIndex creates an unbiased estimator for each element of the Schur complement L/V𝑙

based on Lemma 3.8, and then computes the pseudo-inverse as the estimator of (L/V𝑙)† using
eigen-decomposition. In the following, we analyze the accuracy guarantee and time complexity of

RsfIndex.

Theoretical analysis of RsfIndex. First, similar to RwIndex, the sample size for RsfIndex to obtain
an 𝜖-spectral sparsifier can also be derived.

Lemma 4.4. Let ΔG be the diameter of the graph G, let 𝑑𝑚𝑎𝑥
V𝑙

be the maximum degree of the nodes

inV𝑙 in the original graph G. When the sample size 𝜔 is larger than𝑂 (
ΔG𝑑𝑚𝑎𝑥

V𝑙
log𝑛

𝜖2
), the approximate

Schur complement graphH in RsfIndex is an 𝜖-spectral sparsifier of G/V𝑙 .

Similar to RwIndex, RsfIndex can also support an 𝜖-estimation query of ER if it constructs an

𝜖-spectral sparsifier, which we will discuss later. We can give the overall time complexity as follows:

Lemma 4.5. The expected time complexity of RsfIndex to obtain an 𝜖-spectral sparsifier of G/V𝑙 is

𝑂 (
Tr((I−PUU)−1)ΔG𝑑𝑚𝑎𝑥

V𝑙
log𝑛

𝜖2
).

In Lemma 4.5, 𝑡𝑙𝑒V𝑙
= Tr((I − PUU)−1) is the expected running time of a loop-erased walk

with root setV𝑙 , which is strictly smaller than the expected running time of |U| random walks

(®1𝑇 (I − PUU)−1®1) in Algorithm 1. According to Lemma 3.5, 𝜏V𝑙
[𝑢,𝑢] = ((I − PUU)−1)𝑢𝑢 . Thus, 𝑡𝑙𝑒V𝑙

can also be written as

∑
𝑢∈U 𝜏V𝑙

[𝑢,𝑢]. Since 𝜏V𝑙
[𝑢,𝑢] is the expected number of passes to a node

𝑢 in a random walk starting from 𝑢 and stopping when hittingV𝑙 . In real-world networks, ifV𝑙

is properly chosen, there is little probability that a node will pass itself twice. As a result, 𝑡𝑙𝑒V𝑙
is

nearly 𝑂 (𝑛). For example, if we chooseV𝑙 as the top-100 highest degree nodes, 𝑡𝑙𝑒V𝑙
= 3.2 × 𝑛 in

a real-life graph PowerGrid [24]. Thus, sampling a spanning forest is much faster than sampling

random walks. For the sample size, it is hard to compare the bound of RwIndex (|V𝑙 |ΔG log𝑛

𝜖2
) and

the bound of RsfIndex (
𝑑𝑚𝑎𝑥
V𝑙

ΔG log𝑛

𝜖2
). In general, 𝑑𝑚𝑎𝑥

V𝑙
is larger than |V𝑙 |, since we prefer a small set

of nodes with high degree. However, these bounds are just worst-case theoretical bounds, we find

that in practice, RsfIndex can also obtain comparable index quality compared to RwIndex when the

sample size is the same. For the overall performance, we will show in experiments that RsfIndex is
significantly better than RwIndex.

4.2 Query processing algorithms
In this section, we propose three novel algorithms to efficiently process any single-pair ER query

based on our index. Note that equipped with our index, it is sufficient to compute at most three

elements of the matrix L−1

UU (i.e., (L−1

UU)𝑠𝑠 , (L
−1

UU)𝑡𝑡 , (L
−1

UU)𝑠𝑡) to process a ER query 𝑟 (𝑠, 𝑡) based
on Lemma 3.7. Below, we first propose three new algorithms to estimate an element of L−1

UU ,
followed by the query processing algorithm.

Estimating (L−1

UU)𝑠𝑡 byV𝑙 -absorbed random walk. By Lemma 3.4, we have already shown that

each element of L−1

UU can be determined by the probability of aV𝑙 -absorbed random walk. Based on

this, we can easily devise aV𝑙 -absorbed random walk sampling algorithm to estimate the element

of L−1

UU . Specifically, to estimate (L−1

UU)𝑠𝑡 ((L
−1

UU)𝑠𝑠 and (L
−1

UU)𝑡𝑡 can be estimated similarly), we

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 133. Publication date: June 2024.

133:12 Meihao Liao et al.

first simulate a number ofV𝑙 -absorbed random walks from 𝑠 , and then take the average number

of visits to the node 𝑡 as an estimator of (L−1

UU)𝑠𝑡 . Clearly, by Lemma 3.4, such an estimator is

unbiased. Note that such an algorithm can also simultaneously estimate (L−1

UU)𝑠𝑡 for each node

𝑡 ∈ U by simulating V𝑙 -absorbed random walks from 𝑠 . This is because for each V𝑙 -absorbed

random walk, we can simultaneously count the number of visits for all nodes in this walk. Thus, for

each node, we can derive an unbiased estimator by taking the average visits across allV𝑙 -absorbed

random walks. Such aV𝑙 -absorbed random walk sampling approach that simultaneously estimates

(L−1

UU)𝑠𝑡 for every node 𝑡 ∈ U will be used in computing the single-source ER query.

Additionally, it is worth mentioning that if the landmark node setV𝑙 contains only one node 𝑣 ,

then our algorithm is exactly equivalent to the 𝑣-absorbed random walk algorithm proposed in [28].

In this sense, the 𝑣-absorbed randomwalk algorithm [28] is a special case of our algorithm. However,

compared to the 𝑣-absorbed random walk algorithm, our algorithm is often much more efficient,

because theV𝑙 -absorbed random walk (with multiple landmark nodes) typically terminates much

faster than 𝑣-absorbed random walk (with only one landmark node).

Estimating (L−1

UU)𝑠𝑡 byV𝑙 -absorbed push. Push is a powerful technique to compute the person-

alized PageRank vector [7, 8, 13]. Recently, Liao et al. [28] propose a push-style algorithm, called

𝑣-absorbed push, to compute the effective resistance. However, their push algorithm only relies on

a single landmark nodes. Here, we propose a new push-style algorithm to compute the elements

of L−1

UU , called V𝑙 -absorbed push, by extending their technique with multiple landmark nodes.

Such aV𝑙 -absorbed push can be regarded as the deterministic version of ourV𝑙 -absorbed random

walk algorithm. Algorithm 2 details our V𝑙 -absorbed push algorithm. Let 𝝉𝑠 be the 𝑠-th row of

(I − PUU)−1
. We can easily obtain that the 𝑡-th element of 𝝉𝑠 is 𝝉𝑠 (𝑡) = 𝜏V𝑙

[𝑠, 𝑡] by Lemma 3.4.

Since (I − PUU)−1D−1

UU = L−1

UU , we can also obtain (L−1

UU)𝑠𝑡 by (L
−1

UU)𝑠𝑡 =
𝝉𝑠 (𝑡)
𝑑𝑡

.

As described in Algorithm 2, a V𝑙 -absorbed push procedure maintains two |U|-dimensional

vectors: (i) 𝝉𝑠 , which is the estimated vector of 𝝉𝑠 ; and (ii) "res", which is the residual vector. Initially,

𝝉𝑠 is set as 0 and "res" is set as e𝑠 (Line 1). Then, every time there exists a node 𝑢 ∈ U such that

res(𝑢) > 𝑟max, we will conduct push operation on the node 𝑢 (Lines 2-6). Specifically, we add the

residual of 𝑢 to the estimated value of 𝑢 (Line 3), and uniformly distribute the residual of 𝑢 to its

neighbors (Lines 4-6). If the neighbor node belongs toV𝑙 , the residual will vanish. It is easy to show

(by induction) that the following invariant holds during the whole push process:

𝜏V𝑙
[𝑠,𝑢] = 𝝉𝑠 (𝑢) +

∑︁
𝑤∈U

𝜏V𝑙
[𝑤,𝑢]res(𝑤). (13)

This is because each push operation in Algorithm 2 (Lines 3-6) does not violate the invariant

equation. Note that when the landmark setV𝑙 contains only one node 𝑣 , Algorithm 2 degrades to

the 𝑣-absorbed push proposed by Liao et al. [28]. Likewise, ourV𝑙 -absorbed push is often much

faster than the 𝑣-absorbed push, as the residuals can vanish faster with multiple landmark nodes

compared to the case that has only one landmark node. Intuitively, by Eq. (13), the vector 𝝉𝑠 output
by Algorithm 2 is a good approximation of the true vector 𝝉𝑠 if the threshold 𝑟max is small, because

the final residual vector res satisfies res(𝑤) ≤ 𝑟max when the algorithm terminates. As a result, by

Lemma 3.4, we can easily obtain an approximation of (L−1

UU)𝑠𝑡 for all 𝑡 ∈ V . Later, we will present

detailed error guarantee and time complexity analysis of theV𝑙 -absorbed push algorithm.

CombiningV𝑙 -absorbed random walk and push. To further improve the efficiency, we propose

a bidirectional algorithm by combining the techniques of V𝑙 -absorbed random walk and V𝑙 -

absorbed push based on the invariant equation Eq. (13). Specifically, the bidirectional algorithm

first invokes aV𝑙 -absorbed push with a relatively-large parameter 𝑟max to obtain a rough estimation

of 𝝉𝑠 . Then, by Eq. (13), we can easily show that the additive error of the estimation is bounded by

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 133. Publication date: June 2024.

Efficient and Provable Effective Resistance Computation on Large Graphs: an Index-based Approach 133:13

Algorithm 2: TheV𝑙 -absorbed push algorithm

Input: Graph G, landmark node set V𝑙 , a source node 𝑠 , a threshold 𝑟max

Output: 𝝉𝑠 as an approximation of 𝝉𝑠
1 𝝉𝑠 ← 0, res← e𝑠 ;
2 while ∃𝑢 ∈ U such that res(𝑢) > 𝑟max do
3 𝝉𝑠 (𝑢) ← 𝝉𝑠 (𝑢) + res(𝑢) ;
4 for each 𝑤 ∈ N(𝑢) ∩ U do
5 res(𝑤) ← res(𝑤) + res(𝑢)

𝑑 (𝑤) ;

6 res(𝑢) ← 0;

7 return 𝝉𝑠 ;

Algorithm 3: The single-pair ER query processing algorithm

Input: Graph G, landmark node set V𝑙 , a source node 𝑠 , a target node 𝑡 , two indexed matrices P𝑟 and L†H
Output: 𝑟 (𝑠, 𝑡) as an estimation of 𝑟 (𝑠, 𝑡)

1 if 𝑠, 𝑡 ∈ V𝑙 then
2 𝑟 (𝑠, 𝑡) ← (e𝑠 − e𝑡)𝑇 L†H (e𝑠 − e𝑡) ;
3 else if 𝑠 ∈ U, 𝑡 ∈ V𝑙 then
4 Invoking an algorithm to obtain an estimation (L̃−1

UU)𝑠𝑠 of (L−1

UU)𝑠𝑠 ;
5 𝑟 (𝑠, 𝑡) ← (L̃−1

UU)𝑠𝑠 + (p𝑠 − e𝑡)𝑇 L†H (p𝑠 − e𝑡) ;
6 else if 𝑠 ∈ V𝑙 , 𝑡 ∈ U then
7 Invoking an algorithm to obtain an estimation (L̃−1

UU)𝑡𝑡 of (L−1

UU)𝑡𝑡 ;
8 𝑟 (𝑠, 𝑡) ← (L̃−1

UU)𝑡𝑡 + (p𝑡 − e𝑠)𝑇 L†H (p𝑡 − e𝑠) ;
9 else if 𝑠, 𝑡 ∈ U then
10 Invoking an algorithm to obtain an estimation (L̃−1

UU)𝑠𝑠 , (L̃
−1

UU)𝑡𝑡 and (L̃−1

UU)𝑠𝑡 of (L−1

UU)𝑠𝑠 , (L
−1

UU)𝑡𝑡 and (L−1

UU)𝑠𝑡
respectively;

11 𝑟 (𝑠, 𝑡) ← (e𝑠 − e𝑡)𝑇 L̃−1

UU (e𝑠 − e𝑡) + (p𝑠 − p𝑡)𝑇 L†H (p𝑠 − p𝑡) ;
12 return 𝑟 (𝑠, 𝑡)

∑
𝑤∈U 𝜏V𝑙

[𝑤,𝑢]res(𝑤). Here the "res" vector is the residual vector output byV𝑙 -absorbed push.

Subsequently, to make the estimation more accurate, we can applyV𝑙 -absorbed random walk to

estimate the second term of the right hand side of Eq. (13). To achieve this, we draw a source node

𝑠′ from the probability distribution
res
∥res∥1 , and sample a V𝑙 -absorbed random walk from 𝑠′. For

each node𝑤 theV𝑙 -absorbed random walk visits, we add ∥res∥1 to the estimation 𝝉𝑠 (𝑤). It can be

shown that this is an unbiased estimation of the second term of the right hand side of Eq. (13). By

properly setting the threshold 𝑟max and the sample size 𝜔 , we can obtain an algorithm that is better

than both ofV𝑙 -absorbed random walk andV𝑙 -absorbed push. We will present a detailed analysis

of this bidirectional algorithm in the following.

The single-pair ER query processing algorithm. Equipped with the above three different

techniques to estimate the elements of L−1

UU , we propose three algorithms for processing the

single-pair ER query based on Lemma 3.7.

The detailed description of our algorithm is shown in Algorithm 3. Algorithm 3 takes two indexed

matrices P𝑟 (P𝑓) and L†H as input. Let p𝑢𝑖 be the 𝑢𝑖 -th row of P𝑟 . By Lemma 3.7, there are four cases

depending on which set 𝑠 and 𝑡 belongs to. When 𝑠, 𝑡 ∈ V𝑙 , i.e., both of them belong to the landmark

node set, the algorithm computes an estimator 𝑟 (𝑠, 𝑡) using the indexed matrix L†H within 𝑂 (1)
time (Lines 1-2). When one node (𝑠 or 𝑡) belongs toU, the other node is located inV𝑙 , Algorithm 3

first invokes an algorithm devised above (e.g., V𝑙 -absorbed random walk, or V𝑙 -absorbed push,

or the bidirectional algorithm) to estimate only one element of L−1

UU , and then compute 𝑟 (𝑠, 𝑡) by
Lemma 3.7 (Lines 3-8). When 𝑠, 𝑡 ∈ U, the situation becomes more complicated. Specifically, in

this case, Algorithm 3 needs to estimate three elements of L−1

UU by Lemma 3.7 (Lines 9-11). For

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 133. Publication date: June 2024.

133:14 Meihao Liao et al.

convenience, we refer to Algorithm 3 that is equipped withV𝑙 -absorbed random walk,V𝑙 -absorbed

push, and the bidirectional algorithm as RW, Push and Bipush respectively. Below, we present

comprehensive theoretical analyses of these algorithms.

Theoretical analysis of the query processing algorithms. First, we give the time complexity

for the three techniques to achieve an 𝜖-estimation of (L−1

UU)𝑠𝑡 .
Lemma 4.6. Let 𝜆V𝑙

be the spectral radius of the probability transition matrix PUU , 𝜎V𝑙
=

𝑂 (log(1/(𝜖 (1−𝜆V𝑙)))
log(1/𝜆V𝑙)

), theV𝑙 -absorbed random walk sampling algorithm can estimate (L−1

UU)𝑠𝑡 with 𝜖

absolute error in time 𝑂 (
𝜎3

V𝑙
𝜖2
).

Note that 𝜆V𝑙
is often near to 1 in real-life networks [42]. Thus, by Lemma 4.6, 𝜎V𝑙

is a small

number, which results in an efficient sublinear algorithm. Recall that the 𝑣-absorbed walk sampling

algorithm proposed in [28] is a special case of the V𝑙 -absorbed walk sampling algorithm when

V𝑙 = {𝑣}. Let 𝜆𝑣 denote the spectral radius of P𝑣 , 𝜎𝑣 = 𝑂 (log(1/𝜖 (1−𝜆𝑣))
log(1/𝜆𝑣)). The time complexity for

the 𝑣-absorbed walk sampling algorithm is 𝑂 (𝜎
3

𝑣

𝜖2
). According to the Cauchy Interlacing theorem

[12], 𝜆V (1)
𝑙

< 𝜆V (2)
𝑙

ifV (1)
𝑙
⊂ V (2)

𝑙
. Thus, we have 𝜎V𝑙

< 𝜎𝑣 , the theoretical bound of the algorithm

is strictly better than [28]. For example, on a real-life network PowerGrid, 𝜎𝑣 = 1.5 × 10
5
while

𝜎V𝑙
= 1321 ifV𝑙 is the top-100 highest degree nodes. Next, we derive a theoretical bound for the

V𝑙 -absorbed push algorithm.

Lemma 4.7. Let ¯𝑑 = 2𝑚
𝑛

be the average degree, the V𝑙 -absorbed push algorithm can estimate

(L−1

UU)𝑠𝑡 with 𝜖 absolute error in time 𝑂 (¯𝑑ℎ (𝑠,V𝑙)ℎ (𝑡,V𝑙)
𝜖

).
Based on the results of Lemma 4.7, the time complexity of the bidirectional algorithm is closely

related to the hitting time from the query node toV𝑙 . Notice that the time complexity of the push

algorithm proposed in [28] to achieve an 𝜖-absolute error of (L−1

𝑣)𝑠𝑡 is
¯𝑑ℎ (𝑠,𝑣)ℎ (𝑡,𝑣)

𝜖
based on our

results. The hitting time ℎ(𝑢,V𝑙) is intuitively smaller than ℎ(𝑢, 𝑣) for 𝑢 ∈ U, since there are

more nodes to hit. Thus, the time complexity of our algorithm is lower than that of the algorithm

in [28]. For example, on a real-life network PowerGrid, ¯ℎ𝑣 = 1

𝑛−1

∑
𝑢∈V\{𝑣} ℎ(𝑢, 𝑣) is 1.3 × 10

4

while
¯ℎV𝑙

= 1

|U |
∑

𝑢∈U ℎ(𝑢,V𝑙) is 71 ifV𝑙 is the top-100 highest degree nodes. Next, we present

theoretical analysis for the bidirectional algorithm.

Lemma 4.8. The bidirectional algorithm can estimate (L−1

UU)𝑠𝑡 with 𝜖 absolute error in time

𝑂 ((𝑛
¯𝑑ℎ (𝑠,V𝑙))

2

3 𝜎V𝑙

𝜖
2

3

).

As the bidirectional algorithm is a combination of theV𝑙 -absorbed walk sampling algorithm

and theV𝑙 -absorbed push algorithm, the dependency of the bound on 𝜎V𝑙
, ℎ(𝑢,V𝑙) and 𝜖 is better

than both of the algorithms. Although there is an additional 𝑛 term, the bound presented in

Lemma 4.8 is only a worst-case theoretical bound. We find that in experiments, the bidirectional

algorithm performs much better than bothV𝑙 -absorbed random walk sampling andV𝑙 -absorbed

push. Moreover, as discussed above, the time complexity bound is also strictly better than the

Bipush algorithm proposed in [28], since 𝜎V𝑙
, ℎ(𝑢,V𝑙) are smaller than 𝜎𝑣 , ℎ(𝑢, 𝑣) respectively.

Recall that in Algorithm 3, the error of the single-pair query algorithm includes both the error

of building index and the error of estimating L−1

UU . Next, we first show the time complexity for

RwIndex and RsfIndex to achieve an 𝜖-absolute error of index building. Then, we combine the error

of estimating L−1

UU to give the total error of the query processing algorithms. Here, the error for

index building is different in four cases, depending on the query node 𝑠 and 𝑡 : (i) If 𝑠, 𝑡 ∈ V𝑙 , it is

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 133. Publication date: June 2024.

Efficient and Provable Effective Resistance Computation on Large Graphs: an Index-based Approach 133:15

the error of estimating (e𝑠 − e𝑡)𝑇L†H (e𝑠 − e𝑡); (ii) If 𝑠 ∈ U, 𝑡 ∈ V𝑙 , it is the error for estimating

(p𝑠 − e𝑡)𝑇 L†H (p𝑠 − e𝑡); (iii) If 𝑠 ∈ V𝑙 , 𝑡 ∈ U, it is the error for estimating (p𝑡 − e𝑠)𝑇 L†H (p𝑡 − e𝑠); (iv)
If 𝑠, 𝑡 ∈ V𝑙 , is the error for estimating (p𝑠 − p𝑡)𝑇 L†H (p𝑠 − p𝑡). Below, we show the time complexity

for RwIndex and RsfIndex to achieve an 𝜖-absolute error for index building.

Lemma 4.9. RwIndex can achieve an 𝜖-absolute error in time 𝑂 (
®1𝑇 (I−PUU)−1®1Δ3

G |V𝑙 | log𝑛

𝜖2
).

Lemma 4.10. RsfIndex can achieve an 𝜖-absolute error in time 𝑂 (
Tr((I−PUU)−1)𝑑𝑚𝑎𝑥

V𝑙
Δ2

G |V𝑙 | log𝑛

𝜖2
).

Based on Lemma 4.9 and Lemma 4.10, we can give the query time complexity for all the three

algorithms to achieve an 𝜖-absolute error of 𝑟 (𝑠, 𝑡) based on the fact that we have built the index

with an 𝜖-absolute error.

Lemma 4.11. The query complexity of RW to achieve an 𝜖-absolute error for 𝑟 (𝑠, 𝑡) is 𝑂 (
𝜎3

V𝑙
𝜖2
).

Lemma 4.12. Let ℎV𝑙
= max{ℎ(𝑠,V𝑙), ℎ(𝑡,V𝑙)}, the query complexity of Push to achieve an 𝜖-

absolute error for 𝑟 (𝑠, 𝑡) is 𝑂 (
¯𝑑ℎ2

V𝑙
𝜖).

Lemma 4.13. The query complexity ofBipush to achieve an 𝜖-absolute error for 𝑟 (𝑠, 𝑡) is𝑂 ((𝑛
¯𝑑ℎV𝑙)

2

3 𝜎V𝑙

𝜖
2

3

).

As discussed above, the bounds of the three query algorithms are strictly better than the RW,

Push and Bipush algorithm proposed in [28], which are all special cases of our algorithms. Moreover,

the bound is also better than the other SOTA method GEER [62]. Let 𝜆1 ≤ · · · ≤ 𝜆𝑛 = 1 be the

eigenvalues of the probability transition matrix P, 𝜆 = max{|𝜆1 |, 𝜆𝑛−1} is called the spectral radius of
P. Then, suppose that 𝜎 = 𝑂 (log(1/𝜖 (1−𝜆))

log(1/𝜆)), the time complexity for GEER to achieve an 𝜖-absolute

error is 𝑂 (𝜎3

𝜖2
), which is similar to the bound 𝑂 (

𝜎3

V𝑙
𝜖2
) of RW. Although it is hard to compare these

bounds in theory. We find that in practice, whenV𝑙 is properly selected, 𝜎V𝑙
can be significantly

smaller than 𝜎 . For example, on a real-life graph PowerGrid [24], 𝜎V𝑙
= 1321 if we select V𝑙 as

the top-100 highest degree nodes, while 𝜎 is as large as 3.3 × 10
4
. Thus, the theoretical bound of

our query processing algorithms RW to achieve an 𝜖-estimation of effective resistance is strictly

better than the SOTA methods in such cases. Moreover, Push and Bipush can be better than RW
further as we have discussed. We will show in experiments that the empirical performance of our

algorithms is significantly better than the SOTA methods.

Discussions. In the above analysis, we give time complexities based on quantities defined by specific

graph parameters. Next, we state that we can also derive bounds related to the graph size 𝑛. In the

following analysis, we assume that real-world graphs are always scale-free (i.e.,𝑚 = 𝑂 (𝑛 log𝑛)) and
small-world (i.e., ΔG = 𝑂 (log𝑛)) graphs. These assumptions are widely adopted by previous studies

[9, 29, 56, 58, 61]. At the same time, we assume that real-world graphs are always rapid-mixing

[40]. Here, the mixing time of a graph is defined as the minimal length of the random walk to reach

the stationary distribution. A typical upper bound of the mixing time is
1

1−𝜆 , where 𝜆 is the spectral

radius of the probability transition matrix P. It is well-known that
1

1−𝜆 = 𝑂 (log𝑛) in real-world

graphs [40]. As we have discussed before, 𝜆V𝑙
is smaller than 𝜆 after properly selecting landmarks,

thus we also assume that
1

1−𝜆V𝑙
= 𝑂 (log𝑛). Notice that similar assumptions are widely adopted

by previous studies related to effective resistance computation [42, 62], and a wide range of very

recent theoretical papers [16, 19, 26]. Let
¯ℎ(V𝑙) =

∑
𝑢∈U

1

|U |ℎ(𝑢,V𝑙) be the average hitting time

from all nodes inU toV𝑙 , we first show that under such assumptions, several quantities in the

above analysis can be simplified as 𝑂 (log𝑛).

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 133. Publication date: June 2024.

133:16 Meihao Liao et al.

Lemma 4.14. When the underlying graph is fast mixing after selecting a landmark node setV𝑙 , i.e.
1

1−𝜆V𝑙
= 𝑂 (log𝑛), we can derive that 𝜎V𝑙

= 𝑂 (log𝑛) and ¯ℎ(V𝑙) = 𝑂 (log𝑛).

Then, equipped with Lemma 4.14, we have the following results:

Lemma 4.15. Suppose that 𝑚 = 𝑂 (𝑛 log𝑛), ΔG = 𝑂 (log𝑛) and 1

1−𝜆V𝑙
= 𝑂 (log𝑛), the index

building algorithms RwIndex and RsfIndex can both achieve a near-linear time complexity 𝑂 (𝑛)1.

Lemma 4.16. Suppose that𝑚 = 𝑂 (𝑛 log𝑛), 1

1−𝜆V𝑙
= 𝑂 (log𝑛), the query processing algorithms can

achieve a sub-linear time complexity. Specifically,RW and Push have a query complexity𝑂 (poly log𝑛).
For Bipush, it is 𝑂 (𝑛 2

3).

Notice that although the proposed algorithms are sub-linear under our assumptions, these bounds

are just worst-case theoretical bounds. The experimental evaluation (See Section 6.2) shows that

they have much better empirical performance than existing algorithms [42, 62] which also can

achieve a𝑂 (poly(log𝑛)) bound under similar assumptions. Moreover, the experimental evaluation

also shows that Bipush is much better than the other two algorithms RW and Push.

Heuristic landmark nodes set selection. Recall that the efficiency of our algorithms is closely

related to the landmark set nodes. However, given a number 𝑘 , selecting 𝑘 landmarks lacks a unique

criterion, as the performance of the proposed algorithms depends on different specific parameters.

For example, as the time complexity of the single-pair index-building algorithm RsfIndex is related
to the expected running time of the Wilson algorithm 𝑂 (Tr(I − PUU)−1). Thus, one possible

objective is to minimize 𝑂 (Tr(I − PUU)−1) by choosing 𝑘 nodesV𝑙 , thus minimizing the time of

building index. This problem is known to be NP-hard, as shown in [25]. For another example, the

query processing algorithm Push takes time complexity which is related to the hitting time from

the query node to the landmark setV𝑙 . Thus, another possible objective is to choose 𝑘 nodesV𝑙

that minimize the average hitting time from all other nodes to the node setV𝑙 . This problem is

also an NP-hard problem, as shown in [3]. However, solving these problems is not a necessity for

our approach. Instead, we employ several heuristic selection strategies and observe that simple

heuristics yield good performance. Intuitively, if every node inU can easily hit any one landmark

node in V𝑙 by a random walk, then our algorithms can be very efficient, because both the V𝑙 -

absorbed random walk andV𝑙 -absorbed push can terminate very quickly in this case. Based on

this intuition, we present two heuristic landmark node selection methods as follows. The first

approach degree+ is based on the degree of the nodes. Specifically, we first sort the nodes in an

non-increasing ordering by their degrees. Then, we add the highest-degree node intoV𝑙 and delete

all the neighbors of this selected node from the graph. In the remaining graph, we iteratively select

the highest-degree nodes according this rule, until we get |V𝑙 | nodes. Since we always select the
highest-degree nodes, this method can often obtain a good landmark node set such that other nodes

can easily hit the landmark nodes. Instead of using the degrees, our second method pagerank+ is

based on the PageRank values. The selection procedure is same as the degree-based method, i.e., it

iteratively selects the highest PageRank node from the remaining graph (when a node is selected,

all of its neighbors will be deleted). Our experiments in Section 6.4 confirm that these methods are

very effective in practice.

5 SINGLE-SOURCE ER COMPUTATION
A straightforward single-source ER computation approach is to invoke the single-pair algorithm

for 𝑛 times. However, even equipped with the index proposed in Section 4.1, such a straightforward

1𝑂 (·) = 𝑂 (· ∗ poly log𝑛) , the𝑂 notation hides the (log𝑛)𝑂 (1) factors

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 133. Publication date: June 2024.

Efficient and Provable Effective Resistance Computation on Large Graphs: an Index-based Approach 133:17

Algorithm 4: RsfIndex-SS
Input: Graph G, landmark node set V𝑙 , sample size 𝜔

Output: P̃𝑓 , L
†
H , (

�L−1

UU)𝑢𝑢 for each 𝑢 ∈ U
1 P̃𝑓 , L

†
H ← RsfIndex(G,V𝑙 , 𝜔) ;

2 Let F̃V𝑙 be the set of V𝑙 -rooted random spanning forest sampled by RsfIndex;

3 (�L−1

UU)𝑢𝑢 ← 0 for 𝑢 ∈ U;

4 Fix a path P𝑢{V𝑙 from node 𝑢 to V𝑙 for each 𝑢 ∈ U in G;
5 for each 𝐹 ∈ F̃V𝑙 do
6 for each node 𝑢 ∈ U do
7 Let P𝐹 :𝑢{V𝑙 denote the unique path from 𝑢 to V𝑙 in 𝐹 ;

8 for each edge (𝑒1, 𝑒2) ∈ P𝑢{V𝑙 do
9 if (𝑒1, 𝑒2) ∈ P𝐹 :𝑢{V𝑙 then

10 (�L−1

UU)𝑢𝑢 ← (
�L−1

UU)𝑢𝑢 +
1

𝜔

11 if (𝑒2, 𝑒1) ∈ P𝐹 :𝑢{V𝑙 then

12 (�L−1

UU)𝑢𝑢 ← (
�L−1

UU)𝑢𝑢 −
1

𝜔

13 return P̃𝑓 , L
†
H , (

�L−1

UU)𝑢𝑢 for each 𝑢 ∈ U

method may still need to compute (L−1

UU)𝑠𝑠 , (L
−1

UU)𝑠𝑡 , (L
−1

UU)𝑡𝑡 for all 𝑡 ∈ U, which is very costly

for large graphs.

Recall that for a given source node 𝑠 , we can simultaneously compute (L−1

UU)𝑠𝑡 for all 𝑡 ∈ U by

invoking theV𝑙 -absorbed random walk orV𝑙 -absorbed push algorithms proposed in Section 4.2.

Thus, for the single-source ER computation problem, the most challenging step is to compute

(L−1

UU)𝑡𝑡 for all 𝑡 ∈ U, i.e., the diagonal elements of the matrix L−1

UU . Since the diagonal elements

of L−1

UU are independent on the source node, a natural question is that can we pre-compute all

such diagonal elements and maintain them as an index? A basic method to compute all diagonal

elements requires to invoke theV𝑙 -absorbed random walk orV𝑙 -absorbed push algorithms for 𝑛

times, which is costly for large graphs. In this section, we first propose two efficient Monte Carlo

algorithms to estimate (L−1

UU)𝑡𝑡 for all 𝑡 ∈ U. Together with the two index matrices P̃𝑟 and L†H
constructed in Section 4.1, we obtain a new index, including all diagonal elements of L−1

UU , for
handling single-source ER query. Based on the new index, we then propose two efficient query

processing algorithms for handling single-source ER queries.

5.1 Index Construction Algorithms
To construct our index, the key is to efficiently estimate all diagonal elements of L−1

UU . To achieve

this goal, we propose two novel algorithms based on the Wilson algorithm with a root setV𝑙 . We

show that all diagonal elements of L−1

UU can be approximated at the same time when building the

index matrices P̃𝑓 and L†H using RsfIndex.

Index building by V𝑙 -rooted random spanning forest sampling. Recall that RsfIndex can
obtain two index matrices P̃𝑓 and L†H by sampling a set ofV𝑙 -rooted random spanning forests. Let

F̃V𝑙
be the set ofV𝑙 -rooted random spanning forests sampled by RsfIndex. Interestingly, we find

that all the diagonal elements of L−1

UU can also be estimated by F̃V𝑙
. Specifically, we first establish a

useful lemma which shows a close connection between the number ofV𝑙 -rooted random spanning

forests to the diagonal elements of L−1

UU .
Let FV𝑙

be the set ofV𝑙 -rooted random spanning forests. Denote by P𝑢{V𝑙
the path from 𝑢 to

the node set V𝑙 . Here, a path from a node 𝑢 to a set V𝑙 means that the path comes from 𝑢 and

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 133. Publication date: June 2024.

133:18 Meihao Liao et al.

Algorithm 5: LeWalkIndex-SS
Input: Graph G, landmark node set V𝑙 , sample size 𝜔

Output: P̃𝑟 , L†H , (
�L−1

UU)𝑢𝑢 for each 𝑢 ∈ U
1 P̃𝑓 , L

†
H ← RsfIndex(G,V𝑙 , 𝜔) ;

2 (�L−1

UU)𝑢𝑢 ← 0 for 𝑢 ∈ U;

3 for 𝑖 = 1 : 𝜔 do
4 In the loop-erased walk of the Wilson algorithm in the 𝑖-th iteration of RsfIndex, if a node is visited for 𝑛𝑢 times, then

(�L−1

UU)𝑢𝑢 ← (
�L−1

UU)𝑢𝑢 +
𝑛𝑢
𝜔

;

5 return P̃𝑓 , L
†
H , (

�L−1

UU)𝑢𝑢 for 𝑢 ∈ U;

terminates at any one node inV𝑙 . Further, we let F (𝑒1,𝑒2)
V𝑙 :𝑢{V𝑙

be the set ofV𝑙 -rooted random spanning

forests that consist of all 𝐹 ∈ FV𝑙
and the unique path from node 𝑢 toV𝑙 passes through the edge

(𝑒1, 𝑒2). Then, we have the following results.

Lemma 5.1. (L−1

UU)𝑢𝑢 =
∑
(𝑒1,𝑒2) ∈𝑃𝑢{V𝑙

| F (𝑒1
,𝑒

2
)

V𝑙 :𝑢{V𝑙
|− | F (𝑒2

,𝑒
1
)

V𝑙 :𝑢{V𝑙
|

| FV𝑙 |
, where the sum is taking over edges in

the path 𝑃𝑢{V𝑙
.

Based on Lemma 5.1, we can fix a set of paths from each node 𝑢 ∈ U to V𝑙 . When sampling

a spanning forest 𝐹 ∈ F̃V𝑙
, we examine whether the paths from 𝑢 to V𝑙 in 𝐹 pass through the

edges in the pre-fixed paths to obtain an unbiased estimation of (L−1

UU)𝑢𝑢 for 𝑢 ∈ U. Note that

this can be easily implemented by a depth-first search (DFS) procedure. Specifically, we start the

DFS procedure by regarding the landmark node set V𝑙 as a start node, and exploit the graph in

a DFS manner. During the DFS procedure, we record the visit time and the finish time for each

node inU that we visit [17]. After the DFS procedure terminates, we can examine whether the

edge (𝑒1, 𝑒2) passes the path P𝐹 :𝑢{V𝑙
by comparing the visit time and finish time of 𝑒1 and 𝑢. The

benefit of the implementation is that we can finish the DFS procedure in𝑂 (𝑚+𝑛) time and examine

each node in 𝑂 (1) time [17], which is very efficient. Combining with RsfIndex to approximate Pf
and (L/V𝑙)†, the resulting index building algorithm is shown in Algorithm 4. In Lines 5-12, the

algorithm estimates the diagonal elements by examining a set of fixed paths in a sampled spanning

forest. When the algorithm terminates, all P̃𝑓 , L
†
H , (

�L−1

UU)𝑢𝑢 for 𝑢 ∈ U are stored as the index. The

size of the index is still𝑂 (𝑛× |V𝑙 |). The following theorem shows the accuracy and time complexity

of Algorithm 4 to build our index.

Lemma 5.2. Algorithm 4 can output an estimation of (L−1

UU)𝑢𝑢 with absolute error 𝜖 for all 𝑢 ∈ U

with the time complexity 𝑂 (
Tr((I−PUU)−1)𝑑𝑚𝑎𝑥

V𝑙
Δ2

G |V𝑙 | log𝑛

𝜖2
).

Index building by loop-erased random walk sampling. Note that Algorithm 4 requires match-

ing the paths in the random spanning forests with a pre-fixed path, which introduces additional time

overheads. Here we propose an alterative algorithm based on the loop-erased random walk (LERW)

sampling. Below, we first present a novel loop-erased random walk interpretation of (L−1

UU)𝑢𝑢 for

𝑢 ∈ U, and based on this interpretation we can develop our algorithm.

Lemma 5.3. Let 𝜏LEV𝑙
[𝑢,𝑢] be the expected number of passes to a node𝑢 ∈ U in a loop-erased random

walk with root setV𝑙 . Then, we have (L−1

UU)𝑢𝑢 =
𝜏LEV𝑙
[𝑢,𝑢]
𝑑𝑢

.

The detailed description of this index-building algorithm is shown in Algorithm 5. According to

Lemma 5.3, we can utilize the loop-erased random walks with root setV𝑙 for sampling random

spanning forests in RsfIndex to simultaneously estimate the diagonal elements (L−1

UU)𝑢𝑢 for all

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 133. Publication date: June 2024.

Efficient and Provable Effective Resistance Computation on Large Graphs: an Index-based Approach 133:19

𝑢 ∈ U. Specifically, by Lemma 5.3, we use the degree-normalized average number of visits to each

node 𝑢 ∈ U as an unbiased estimation of (L−1

UU)𝑢𝑢 for all 𝑢 ∈ U (Line 4). Below, we analyze the

accuracy and time complexity of Algorithm 5.

Lemma 5.4. Algorithm 5 can output an estimation of (L−1

UU)𝑢𝑢 for all 𝑢 ∈ U with the time

complexity 𝑂 (
(𝜎2

V𝑙
+𝑑𝑚𝑎𝑥
V𝑙
) log𝑛 Tr((I−PUU)−1)

𝜖2
).

Discussions. The sample size of Algorithm 4 and Algorithm 5 are

𝑑𝑚𝑎𝑥
V𝑙

Δ2

G |V𝑙 | log𝑛

𝜖2
and

(𝜎2

V𝑙
+𝑑𝑚𝑎𝑥
V𝑙
) log𝑛

𝜖2

respectively. As discussed before, ΔG , 𝜎V𝑙
are typically small numbers. We also find in experiments

that our algorithms can achieve low errors with very small sample size. Note that in [28], there

are also two index building algorithms based on sampling spanning trees and loop-erased walks,

which takes Tr((I − P𝑣)−1) time to draw a sample. The time complexity of our algorithm for

drawing a sample (Tr((I − PUU)−1)) is strictly smaller than [28]. For example, on PowerGrid [24],

Tr((I−P𝑣)−1) = 4.3× 10
5
, while Tr((I−PUU)−1) = 1.5× 10

5
whenV𝑙 is the top-100 highest degree

nodes. We will also show significantly empirical improvement of our index building algorithms

compared to [28].

5.2 Query processing algorithms
Armed with our index, we propose two efficient query processing algorithms based onV𝑙 -absorbed

walk sampling andV𝑙 -absorbed push respectively. Similar to Algorithm 3, given a query node 𝑠 ,

we can update 𝑟 (𝑠,𝑢) for 𝑢 ∈ V accordingly based on Lemma 3.7. For the quantities that cannot

read from the index, we can utilize the V𝑙 -absorbed walk and V𝑙 -absorbed push techniques to

estimate them. We refer to these algorithms as RW-SS and Push-SS, respectively. Due to space

limits, a detailed description of the query processing algorithm can be found in the full version of

this paper [30]. Below, we present a theoretical analysis of our algorithms.

Theoretical analysis of the algorithms. Based on the above results, we can give the query time

complexity for RW-SS and Push-SS to output an estimation of 𝑟 (𝑠,𝑢) with an 𝜖-absolute error for

all 𝑢 ∈ U, equipped with the index we described before.

Lemma 5.5. The query time complexity of RW-SS is 𝑂 (
𝜎3

V𝑙
𝜖2
) for an 𝜖-estimation of 𝑟 (𝑠,𝑢) for all

𝑢 ∈ V .

Lemma 5.6. Let ℎ𝑚𝑎𝑥
V𝑙
(𝑡) be the maximum value of hitting time from all each nodes𝑢 ∈ U toV𝑙 , the

query time complexity of Push-SS is 𝑂 (
¯𝑑ℎ (𝑠,V𝑙)ℎ𝑚𝑎𝑥

V𝑙
(𝑡)

𝜖
) for an 𝜖-estimation of 𝑟 (𝑠,𝑢) for all 𝑢 ∈ V .

Based on the discussions before, the query time complexity of our algorithms is strictly better

compared to the state-of-the-art single-source query algorithms in [28]. Specifically, the query

complexity RW-SS algorithm in [28] is 𝑂 (𝜎
3

𝑣

𝜖2
) based on our analysis, and the Push-SS algorithm

is 𝑂 (
¯𝑑ℎ (𝑠,𝑣)ℎ𝑚𝑎𝑥

𝑣 (𝑡)
𝜖

). We improve the 𝜎𝑣 term into 𝜎V𝑙
and the ℎ(𝑠, 𝑣), ℎ𝑚𝑎𝑥

𝑣 (𝑡) terms into ℎ(𝑠,V𝑙),
ℎ𝑚𝑎𝑥
V𝑙
(𝑡). Similar to the single-pair algorithms, RW-SS and Push-SS perform much better than such

worst-case bounds in real-life graphs.

Discussions. Similar to single-pair algorithms, we can also provide bounds w.r.t. 𝑛 for the single-

source algorithms under the same assumptions. The results are also similar:

Lemma 5.7. Suppose that 1

1−𝜆V𝑙
= 𝑂 (log𝑛),𝑚 = 𝑂 (𝑛 log𝑛) and ΔG = 𝑂 (log𝑛), the index building

algorithms RsfIndex-SS (Algorithm 4) and LeWalkIndex-SS (Algorithm 5) can both achieve a near-
linear time complexity 𝑂 (𝑛).

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 133. Publication date: June 2024.

133:20 Meihao Liao et al.
Table 2. Datasets (¯𝑑 : average degree; Δ𝐺 : diameter of the graph)

Dataset 𝑛 𝑚 ¯𝑑 Δ𝐺 Dataset 𝑛 𝑚 ¯𝑑 Δ𝐺

PowerGrid 4,941 6,594 2.67 46 Road-CA 1,957,027 2,760,388 2.82 849

Email-enron 33,696 180,811 10.73 11 Orkut 3,072,441 117,185,083 76.28 9

Road-PA 1,087,562 1,541,514 2.83 786

0

0.04

0.08

0.12

0.16

10
-1

10
0

10
1

10
2

10
3

re
la

ti
v
e

 e
rr

o
r

time (sec)

RsfIndex
RwIndex

ExactIndex

(a) PowerGrid

0

0.10

0.20

0.30

10
0

10
1

10
2

10
3

10
4

re
la

ti
v
e

 e
rr

o
r

time (sec)

RsfIndex
RwIndex

ExactIndex

(b) Email-enron

Fig. 3. Performance of different index building algo-
rithms for single-pair ER query

10
-3

10
-2

10
-1

10
0

10
1

10
-1

10
0

10
1

10
2

re
la

ti
v
e

 e
rr

o
r

time (sec)

LEwalk
 LeWalkIndex-SS

 UST
RsfIndex-SS

(a) PowerGrid

10
-3

10
-2

10
-1

10
0

10
-1

10
0

10
1

10
2

10
3

re
la

ti
v
e

 e
rr

o
r

time (sec)

LEwalk
 LeWalkIndex-SS

 UST
RsfIndex-SS

(b) Email-enron

Fig. 4. Performance of different index building algo-
rithms for single-source ER query

10
-6

10
-4

10
-2

10
0

10
-5

10
-3

10
-1

10
1

10
3

re
la

ti
v
e
 e

rr
o
r

time (sec)

RW-v
RW

Push-v

Push
Bipush-v

Bipush

GEER

(a) PowerGrid

10
-6

10
-4

10
-2

10
0

10
-4

10
-2

10
0

10
2

re
la

ti
v
e
 e

rr
o
r

time (sec)

RW-v
RW

Push-v

Push
Bipush-v

Bipush

GEER

(b) Email-enron

10
-3

10
-2

10
-1

10
0

10
1

10
-2

10
-1

10
0

10
1

10
2

10
3

re
la

ti
v
e
 e

rr
o
r

time (sec)

RW-v
RW

Push-v

Push
Bipush-v

Bipush

GEER

(c) Road-PA

10
-3

10
-2

10
-1

10
0

10
1

10
-2

10
-1

10
0

10
1

10
2

10
3

re
la

ti
v
e
 e

rr
o
r

time (sec)

RW-v
RW

Push-v

Push
Bipush-v

Bipush

GEER

(d) Road-CA

10
-5

10
-4

10
-3

10
-2

10
-1

10
-2

10
-1

10
0

10
1

10
2

10
3

re
la

ti
v
e
 e

rr
o
r

time (sec)

RW-v
RW

Push-v

Push
Bipush-v

Bipush

GEER

(e) Orkut

Fig. 5. Performance of different query processing algorithms for single-pair ER query

10
-4

10
-3

10
-2

10
-1

10
0

10
-4

10
-2

10
0

10
2

re
la

ti
v
e
 e

rr
o
r

time (sec)

RW-SS-v
 RW-SS

Push-SS-v
Push-SS

(a) PowerGrid

10
-3

10
-2.5

10
-2

10
-1.5

10
-1

10
-3

10
-2

10
-1

10
0

10
1

10
2

re
la

ti
v
e
 e

rr
o
r

time (sec)

RW-SS-v
 RW-SS

Push-SS-v
Push-SS

(b) Email-enron

10
-2

10
-1.5

10
-1

10
-0.5

10
0

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

re
la

ti
v
e
 e

rr
o
r

time (sec)

RW-SS-v
 RW-SS

Push-SS-v
Push-SS

(c) Road-PA

10
-2

10
-1.5

10
-1

10
-0.5

10
0

10
-2

10
0

10
2

10
4

re
la

ti
v
e
 e

rr
o
r

time (sec)

RW-SS-v
 RW-SS

Push-SS-v
Push-SS

(d) Road-CA

10
-3

10
-2.5

10
-2

10
-1.5

10
-1

10
-1

10
0

10
1

10
2

10
3

re
la

ti
v
e
 e

rr
o
r

time (sec)

RW-SS-v
 RW-SS

Push-SS-v
Push-SS

(e) Orkut

Fig. 6. Performance of different query processing algorithms for single-source ER query

Lemma 5.8. The query algorithms RW-SS can achieve a sub-linear time complexity𝑂 (poly(log𝑛))
suppose that𝑚 = 𝑂 (𝑛 log𝑛) and 1

1−𝜆V𝑙
= 𝑂 (log𝑛). For Push-SS, it is 𝑂 (𝑛 1

2).

These results show that when ignoring the time of outputting results (which takes 𝑂 (𝑛) time), it

only requires a sub-linear time complexity to answer a single-source query, which is very efficient.

6 EXPERIMENTS
6.1 Experimental Settings

Datasets. We employ five real-world datasets encompassing various types of graphs, mainly

including social networks and road networks. The detailed statistics of the datasets is illustrated

in Table 2. Among the five datasets, Email-enron and Orkut are social networks. Road-PA and

Road-CA are road networks of America. For PowerGrid, it is an infrastructure network, which we

find its statistics similar to road networks. Road networks and social networks have very different

structures. It is common to observe a comparatively smaller average degree combined with a larger

diameter on road networks. The algorithm behavior is also different on the two types of networks.

For single-pair query, we randomly generate 100 node pairs as the query set and report the average

results. For single-source query, we randomly generate 50 source nodes as the query set and

report the average performance. We can obtain ground truth for both single-pair and single-source

effective resistance by applying deterministic eigen-decomposition to the small datasets. On large

graphs, we obtain the ground-truth results for single-pair query by applying the state-of-the-art

deterministic algorithm Push-v [28] with 𝑟𝑚𝑎𝑥 = 10
−9

following [28, 62]. We apply LEwalk in [28]

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 133. Publication date: June 2024.

Efficient and Provable Effective Resistance Computation on Large Graphs: an Index-based Approach 133:21

10
-1

10
0

10
1

10
2

10
3

10
4

PowerGrid

Email-Enron

Road-PA

Road-CA

Orkut

In
d
e
x
 s

iz
e
 (

M
B

)

Graph size
RwIndex
RsfIndex

(a) single-pair index

10
-1

10
0

10
1

10
2

10
3

10
4

PowerGrid

Email-Enron

Road-PA

Road-CA

Orkut

In
d
e
x
 s

iz
e
 (

M
B

)

Graph size
RwIndex-SS
RsfIndex-SS

RwIndex-SS-v
RsfIndex-SS-v

(b) single-source index

Fig. 7. Index space consumption of differ-
ent algorithms

10
-3

10
-2

10
-1

10
0

10
1

10
2

1 5 10 15 20

ti
m

e
(s

e
c
)

#vl

degree RW
degree+ RW

pagerank RW

pagerank+ RW
random RW

(a) Email-enron

10
-3

10
-2

10
-1

10
0

10
1

10
2

1 100 200 300 400

ti
m

e
(s

e
c
)

#vl

degree RW
degree+ RW

pagerank RW

pagerank+ RW
random RW

(b) PowerGrid

0

0.005

0.01

0.015

0.02

1 5 10 15 20

re
la

ti
v
e

 e
rr

o
r

#vl

degree RW
degree+ RW

pagerank RW

pagerank+ RW
random RW

(c) Email-enron

0

0.01

0.02

0.03

0.04

1 100 200 300 400

re
la

ti
v
e

 e
rr

o
r

#vl

degree RW
degree+ RW

pagerank RW

pagerank+ RW
random RW

(d) PowerGrid

Fig. 8. Effect of the choice ofV𝑙 for single-pair query processing
algorithms

with 𝜔 = 10
6
to obtain the ground-truth results for single-source query following [28] on large

datasets.

Different algorithms. For the index building algorithm, we implement two algorithms RwIndex
and RsfIndex. We have also implemented an exact method ExactIndex to build the index by exactly

solving |U| linear systems. To support single-source query, we also implement two extended

algorithms based on RsfIndex named RsfIndex-SS (Algorithm 4) and LeWalkIndex-SS (Algorithm 5).

We compare the two single-source index building algorithms with the state-of-the-art index building

algorithm UST proposed in [9] and LEwalk proposed in [28] which are special cases of our index

building algorithms when |V𝑙 | = 1. For single-pair query processing algorithms, we implement

three algorithms RW, Push and Bipush which is described in Algorithm 3. We compare the three

query processing algorithms with four state-of-the-art algorithms, GEER [62] and RW-v, Push-v
andBipush-v proposed in [28], which are the special cases of our algorithmswith only one landmark

node. For single-source query, we implement two query processing algorithms RW-SS and Push-SS
which are described in Section 5.2. We compare them with the state-of-the-art algorithms RW-SS-v
and Push-SS-v proposed in [28], which are special cases of our algorithms with one landmark node.

Parameters. For all the proposed algorithms including the index building algorithms and query

processing algorithms for both single-pair query and single-source query, we have shown the

sample size needed and the total time complexity for the algorithms to achieve an 𝜖-estimation of

ER. However, the bounds are just worst-case bounds for comparing the algorithms theoretically.

There will be too much unnecessary work if we use these bounds to determine sample sizes. Thus,

following [28, 42, 62], we compare the algorithms by carefully setting the sample size 𝜔 and the

error threshold 𝑟𝑚𝑎𝑥 to make the algorithms run in a reasonable time. Due to space limits, the

detailed parameter settings of 𝜔 and 𝑟𝑚𝑎𝑥 can be found in the full version of this paper [30]. For

the landmark node set V𝑙 , we set |V𝑙 | = 10 in social networks and |V𝑙 | = 100 in road networks

and use degree+ to select the landmark node set in all our algorithms. We also vary |V𝑙 | and
different landmark selection methods to compare the performance in Section 6.4. For the query

processing algorithms, we use the index built by RsfIndex for single-pair query and the index built

by LeWalkIndex-SS for single-source query by default. We also conduct experiments to evaluate

the effect of different index building algorithms. Due to space limits, some of the experimental

results can be found in the full version of this paper [30].

Experimental environment. All the proposed algorithms are implemented in C++ and run on a

Linux 20.04 server with Intel 2.0 GHz CPU and 128GB memory. For the compared methods, we

use their original C++ implementations in [9, 28, 62]. All the implementations are complied using

GCC9.3.0 with -O3 optimization.

6.2 Results of Single-pair ER Computation

Evaluation of index building algorithms.We evaluate the index building time and the index size

for different single-pair index building algorithms.We use the relative error of the norm of the related

matrices to evaluate the index building quality. Suppose that P̃ and L†H is the estimated matrices

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 133. Publication date: June 2024.

133:22 Meihao Liao et al.

output by RwIndex and RsfIndex, the relative error is defined as

∥P̃−L−1

UULUV𝑙 ∥𝐹
∥L−1

UULUV𝑙 ∥𝐹
+ ∥L

†
H−(L/V𝑙)† ∥𝐹
∥L†H ∥𝐹

,

where ∥A∥𝐹 is the Frobenius norm of matrix A. We vary the parameters of RwIndex and RsfIndex
and plot the running time and empirical error trade-offs. For the exact method ExactIndex, as the
error is 0, we use a triangle to depict the running time. The results are shown in Fig. 3. As can be

seen, both RwIndex and RsfIndex can approximately build the index with a small relative error, and

much faster than the exact method ExactIndex. Among the two proposed approximate algorithms,

RsfIndex is much faster than RwIndex. For example, on PowerGrid, to achieve a relative error

0.01, RsfIndex takes 18 seconds, RwIndex takes 72 seconds while the exact method ExactIndex
needs 706 seconds. Due to space limits, we only show the results of two small graphs PowerGrid
and Email-enron. The results of large graphs can be found in the full version of the paper [30].

The reason is that RsfIndex uses loop-erased walks which are more efficient than sampling |U|
V𝑙 -absorbed random walks. The index size of different index building algorithms is depicted in

Fig. 7(a). Recall that the space complexity of the index is 𝑂 (|V𝑙 | × 𝑛). As expected, the index size
of RwIndex and RsfIndex is smaller than the graph size on social networks, and the index size of

RwIndex and RsfIndex is larger than the graph size on road graphs. However, even on the large

road network Road-CA, it consumes only 1493 MB space to store the index when |V𝑙 | = 100. Thus,

the index size is acceptable and can be easily loaded in memory.

Evaluation of query processing algorithms. We compare the proposed single-pair query

processing algorithms RW, Push, Bipush with four SOTA methods, the RW-v, Push-v, Bipush-v
algorithm proposed in [28], which are the special cases of our algorithms, as well asGEER proposed

in [62]. For all the proposed algorithms, we use the index that we build with the algorithm RsfIndex
in a similar degree of accuracy. We vary the parameters of the algorithms and plot the empirical

error and query time trade-offs. Specifically, let 𝑟 (𝑠, 𝑡) be the estimated ER value, we evaluate

the errors by the relative error defined as
|𝑟 (𝑠,𝑡)−𝑟 (𝑠,𝑡) |

𝑟 (𝑠,𝑡) . The results are shown in Fig. 5. We can

find that on all five datasets, the query processing algorithms RW, Push and Bipush all improve

significantly over RW-v, Push-v and Bipush-v. They can also achieve lower errors compared to

the SOTA method GEER. This demonstrates the effectiveness of the multiple landmark nodes

approaches. Among these algorithms, Bipush obtains the best performance, especially on road

networks. For example, on Road-PA, Bipush can achieve a relative error 0.05 in 0.09 seconds, while

the SOTA method Bipush-v takes 184 seconds. Thus, our algorithm is up to 4-orders of magnitude

faster than the SOTA methods. Push performs well on social networks, while RW performs better

on road networks. This is because, on road networks, the hitting time from a node𝑢 to the landmark

node setV𝑙 is relatively large, which makes the push operation inefficient. In such cases, random

walks exploit the graph more quickly. However, the Bipush algorithm takes advantage of both

algorithms, which performs well on all the datasets.

6.3 Results of Single-source ER Computation

Evaluation of index building algorithms. Notice that the performance of RsfIndex-SS and

LeWalkIndex-SS for estimating the matrix P̃ and the pseudo-inverse L†H is totally the same as

RsfIndex. Thus, we focus on evaluating the performance of estimating the diagonal of L−1

UU . We

evaluate the errors by the maximum relative error. For the compared methods UST and LEwalk,
we also evaluate the errors by the maximum relative error of the diagonal elements. We vary

the parameters of all algorithms and plot the error and time trade-offs. The results are reported

in Fig. 4. As can be seen, both RsfIndex-SS and LeWalkIndex-SS can achieve similar errors with

the same running time compared to UST and LEwalk on social networks. They are slightly faster

than UST and LEwalk on road networks. LeWalkIndex-SS is the best algorithm. For example, on

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 133. Publication date: June 2024.

Efficient and Provable Effective Resistance Computation on Large Graphs: an Index-based Approach 133:23

PowerGrid, it takes 65 seconds for LEwalk to achieve a relative error 0.01, while it takes 32 seconds

for LeWalkIndex-SS. Thus, our algorithm only takes 50% time. The index size of different index

building algorithms is also shown in Fig 7(b). As can be seen, the index size of RsfIndex-SS and

LeWalkIndex-SS is similar to the index size of RwIndex and RsfIndex. Recall that it only requires

to store an additional |U|-dimensional vector. On the largest road network Road-PA, it takes 1523

MB memory. Thus, the index size is still acceptable for large graphs.

Evaluation of query processing algorithms. We compare RW-SS and Push-SS with the SOTA

methods RW-SS-v and Push-SS-v. We evaluate the errors by the maximum relative error, vary the

parameters and plot the empirical error v.s. running time trade-offs. The results are depicted in

Fig. 6. Similar to single pair query, Push-SS is faster on social networks and RW-SS is faster on

road networks. We can find that RW-SS and Push-SS can both answer a single-source query much

faster than RW-SS-v and Push-SS-v. For example, on Road-PA, it takes 30 seconds for RW-SS to
achieve a relative error 0.05, while it takes 2 × 10

4
seconds for RW-SS-v. Thus, our algorithm is up

to 4 orders of magnitude faster than the SOTA methods. This further confirms the effectiveness of

our multiple landmark nodes technique.

6.4 Results of Various Landmark Selection Rules
We study the effect of the choice of the landmark node set V𝑙 by varying both the selection

strategies and |V𝑙 | (i.e. the size of the landmark node setV𝑙). Specifically, we vary |V𝑙 | from 1 to

20 for Email-enron, and vary |V𝑙 | from 1 to 500 for PowerGrid. Five heuristic landmark node set

selection strategies including degree, pagerank, Random, degree+ and pagerank+ are evaluated.

Specifically, degree chooses the nodes with the highest degree, pagerank picks the node with the

largest PageRank centrality values when 𝛼 = 0.15, and Random selects nodes randomly. Moreover,

degree+ and pagerank+ are the newly proposed heuristic rules discussed in Section 4.2. The results

of the query processing algorithm RW on Email-enron and PowerGrid are shown in Fig. 8. We

select 5 different |V𝑙 | results to compare different landmark selection rules. We also show the

results of all |V𝑙 | values with the landmark selection rule degree+. As can be seen in Fig. 8 (a)-(d),

for the comparison of different landmark node selection rules, the performance of all the proposed

heuristics is much better than Random. Among them, degree+ is slightly better. These results

suggest that degree+ is a very good landmark node set choice heuristics in practice, which is also

used in our previous experiments. Moreover, Fig. 8 (e)-(h) show that when |V𝑙 | increases, the
running time and the empirical error of RW decrease on both datasets. For PowerGrid, the running
time first decreases when |V𝑙 | grows from 1 to 100, then increases when |V𝑙 | grows larger than
200. This is because our query processing requires computing a quantity that is related to the index

matrices. When |V𝑙 | is large, the overhead of this computation is also large. Notice that the curves

in Fig. 8 (g)-(h) exhibit some oscillations. This is because RW is a Monte Carlo algorithm that can

produce errors in each execution due to the randomness. Thus, when |V𝑙 | increases, the error can
also increase. However, a long-term decrease trend can be observed on both datasets. As a result,

we set |V𝑙 | = 10 for social networks and |V𝑙 | = 100 for road networks by default.

7 RELATEDWORK

Effectiveness resistance computation. There exist several practical algorithms to compute

single-pair (or single-source) effective resistance on large graphs [28, 42, 62]. For example, Peng et

al. [42] proposed several sublinear local algorithms based on random walk sampling to compute

single-pair effective resistance on the graphs with bounded mixing time. Recently, Yang et al. [62]

and Liao et al. [28] independently further improve their performance of the algorithms. In addition,

there are also algorithms to compute the effective resistance of each edge (also called spanning

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 133. Publication date: June 2024.

133:24 Meihao Liao et al.

edge centrality) in the graph [21, 37, 67]. Note that such a problem is often much easier than the

problem of computing the effective resistance of any pair of query nodes (the two query nodes may

not have an edge), and existing techniques for the spanning edge centrality computation cannot

be used for single-pair (or single-source) effective resistance computation. It is worth mentioning

that theoretically, all-pairs of effective resistance can be approximated in 𝑂 (𝑚 log𝑛

𝜖2
+ 𝑛2) time [49].

However, the algorithm proposed in [49] relies on several complicated techniques with only with

theoretical interests, and its practical performance is often very poor on large graphs [28, 42, 62].

Personalized PageRank computation. Our problem is also closely related to the personalized

PageRank (PPR) computation problem. Random walk sampling algorithms [11, 27, 59] and push

based algorithms [8, 13, 18, 34, 35, 55] are proposed for computing PPR. The state-of-the-art

algorithms compute PPR by combining the two techniques [27, 29, 31, 33, 57–59, 61]. Index-based

methods are also proposed by computing the information of the hub nodes [22, 48, 56, 65]. These

techniques have also been generalized to compute heat Kernel PageRank [23, 63]. However, all

these techniques are mainly designed for PPR computation, and it is unclear how to generalize

these techniques for effective resistance computation. In this paper, we propose several novel

random walk sampling and push based algorithms for computing effective resistance, which are

fundamentally different from existing PPR computation approaches.

Other landmark-based approaches. There are also some other landmark-based approaches in the

field of graph datamanagement. In the problem of shortest path computation [5, 20, 36, 41, 44, 53, 66],

a set of landmark nodes is selected to accelerate shortest path distance query. Specifically, by using

distances to landmark vertices and the triangle inequality, they were able to compute more accurate

lower bounds leading to a significant speed-up of A* search. As the shortest path problem is

closely related NN (nearest neighbor), kNN (k-nearest neighbor) search, a wide range of studies

[1, 2, 15, 38, 39, 54] also select a landmark set and compute the distances from landmarks to all

nodes as an index, building lower bounds to prune unnecessary computation in NN, kNN search.

These studies are focused on the shortest path distance metric. In this paper, we study the problem

of effective resistance computation, which is another distance metric defined based on random

walks. Thus, our multiple landmark-based approaches are totally different from these studies.

8 CONCLUSION
In this paper, we develop a novel index-based approach to efficiently answer both the single-

pair and single-source effective resistance (ER) queries. We first propose three new ER formulas

based on a newly-developed multiple landmarks technique and a concept of Schur complement.

These new formulas enable us to pre-compute a compact index which contains several small-sized

matrices related to the landmark nodes. We propose several efficient and provable Monte Carlo

algorithms to construct the index based on the newly-established probability interpretations of the

Schur complement. With this powerful index, we also develop several provable query processing

algorithms to efficiently answer both the single-pair and single-source ER queries. Extensive

experiments on 5 real-life graphs show that with an acceptable additional space, our algorithms can

achieve up to 4 orders of magnitude faster than the state-of-the-art algorithms while maintaining

the same accuracy.

ACKNOWLEDGMENTS
This work was partially supported by (i) the National Key Research and Development Program of

China 2020AAA0108503, (ii) NSFCGrants U2241211 and 62072034. Rong-Hua Li is the corresponding

author of this paper.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 133. Publication date: June 2024.

Efficient and Provable Effective Resistance Computation on Large Graphs: an Index-based Approach 133:25

REFERENCES
[1] Tenindra Abeywickrama and Muhammad Aamir Cheema. 2017. Efficient Landmark-Based Candidate Generation

for kNN Queries on Road Networks. In Database Systems for Advanced Applications: 22nd International Conference,
DASFAA 2017, Suzhou, China, March 27-30, 2017, Proceedings, Part II 22. Springer, 425–440.

[2] Tenindra Abeywickrama, Muhammad Aamir Cheema, and David Taniar. 2016. k-Nearest Neighbors on Road Networks:

A Journey in Experimentation and In-Memory Implementation. Proceedings of the VLDB Endowment 9, 6 (2016).
[3] Florian Adriaens, Honglian Wang, and Aristides Gionis. 2023. Minimizing Hitting Time between Disparate Groups

with Shortcut Edges. CoRR abs/2306.03571 (2023).

[4] Rafig Agaev and Pavel Chebotarev. 2006. Spanning Forests of a Digraph and Their Applications. CoRR abs/math/0602061

(2006). arXiv:math/0602061

[5] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2013. Fast exact shortest-path distance queries on large networks by

pruned landmark labeling. In Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data.
349–360.

[6] David J Aldous. 1990. The random walk construction of uniform spanning trees and uniform labelled trees. SIAM
Journal on Discrete Mathematics 3, 4 (1990), 450–465.

[7] Reid Andersen, Christian Borgs, Jennifer T. Chayes, John E. Hopcroft, Vahab S. Mirrokni, and Shang-Hua Teng. 2007.

Local Computation of PageRank Contributions. InWAW. 150–165.

[8] Reid Andersen, Fan R. K. Chung, and Kevin J. Lang. 2006. Local Graph Partitioning using PageRank Vectors. In FOCS.
475–486.

[9] Eugenio Angriman, Maria Predari, Alexander van der Grinten, and Henning Meyerhenke. 2020. Approximation of

the Diagonal of a Laplacian’s Pseudoinverse for Complex Network Analysis. In 28th Annual European Symposium on
Algorithms, ESA 2020, September 7-9, 2020, Pisa, Italy (Virtual Conference) (LIPIcs, Vol. 173). 6:1–6:24.

[10] Luca Avena and Alexandre Gaudillière. 2018. Two applications of random spanning forests. Journal of Theoretical
Probability 31, 4 (2018), 1975–2004.

[11] Konstantin Avrachenkov, Nelly Litvak, Danil Nemirovsky, and Natalia Osipova. 2007. Monte Carlo Methods in

PageRank Computation: When One Iteration is Sufficient. SIAM J. Numer. Anal. 45, 2 (2007), 890–904.
[12] Ravindra B Bapat. 2010. Graphs and matrices. Vol. 27. Springer.
[13] Pavel Berkhin. 2006. Bookmark-Coloring Approach to Personalized PageRank Computing. Internet Math. 3, 1 (2006),

41–62.

[14] Béla Bollobás. 1998. Modern graph theory. Vol. 184. Springer Science & Business Media.

[15] Sergey Brin. 1995. Near neighbor search in large metric spaces. In VLDB, Vol. 95. 574–584.
[16] Dongrun Cai, Xue Chen, and Pan Peng. 2023. Effective Resistances in Non-Expander Graphs. arXiv preprint

arXiv:2307.01218 (2023).
[17] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. 2022. Introduction to algorithms. MIT

press.

[18] Mustafa Coskun, Ananth Grama, and Mehmet Koyutürk. 2018. Indexed Fast Network Proximity Querying. VLDB 11, 8

(2018), 840–852.

[19] Rajat Vadiraj Dwaraknath, Ishani Karmarkar, and Aaron Sidford. 2023. Towards Optimal Effective Resistance Estimation.

arXiv preprint arXiv:2306.14820 (2023).
[20] Andrew V Goldberg and Chris Harrelson. 2005. Computing the shortest path: A search meets graph theory. In SODA,

Vol. 5. 156–165.

[21] Takanori Hayashi, Takuya Akiba, and Yuichi Yoshida. 2016. Efficient Algorithms for Spanning Tree Centrality. In

IJCAI. 3733–3739.
[22] Jinhong Jung, Namyong Park, Lee Sael, and U Kang. 2017. BePI: Fast and Memory-Efficient Method for Billion-Scale

Random Walk with Restart. In SIGMOD. 789–804.
[23] Kyle Kloster and David F. Gleich. 2014. Heat kernel based community detection. In KDD. ACM, 1386–1395.

[24] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network Dataset Collection. http://snap.stanford.

edu/data.

[25] Huan Li, Richard Peng, Liren Shan, Yuhao Yi, and Zhongzhi Zhang. 2019. Current Flow Group Closeness Centrality

for Complex Networks?. InWWW. ACM, 961–971.

[26] Lawrence Li and Sushant Sachdeva. 2023. A New Approach to Estimating Effective Resistances and Counting Spanning

Trees in Expander Graphs. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).
SIAM, 2728–2745.

[27] Meihao Liao, Rong-Hua Li, Qiangqiang Dai, Hongyang Chen, Hongchao Qin, and Guoren Wang. 2023. Efficient

Personalized PageRank Computation: The Power of Variance-Reduced Monte Carlo Approaches. Proc. ACM Manag.
Data 1, 2 (2023), 160:1–160:26.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 133. Publication date: June 2024.

https://arxiv.org/abs/math/0602061
http://snap.stanford.edu/data
http://snap.stanford.edu/data

133:26 Meihao Liao et al.

[28] Meihao Liao, Rong-Hua Li, Qiangqiang Dai, Hongyang Chen, Hongchao Qin, and Guoren Wang. 2023. Efficient

Resistance Distance Computation: The Power of Landmark-based Approaches. Proc. ACM Manag. Data 1, 1 (2023),
68:1–68:27.

[29] Meihao Liao, Rong-Hua Li, Qiangqiang Dai, and Guoren Wang. 2022. Efficient Personalized PageRank Computation: A

Spanning Forests Sampling Based Approach. In SIGMOD. ACM, 2048–2061.

[30] Meihao Liao, Junjie Zhou, Rong-Hua Li, Qiangqiang Dai, Hongyang Chen, and Guoren Wang. 2024. Effi-

cient and Provable Effective Resistance Computation on Large Graphs: an Index-based Approach. Full version:
https://github.com/mhliao0516/EffectiveResistanceMultipleLandmark (2024).

[31] Dandan Lin, Raymond Chi-Wing Wong, Min Xie, and Victor Junqiu Wei. 2020. Index-Free Approach with Theoretical

Guarantee for Efficient Random Walk with Restart Query. In ICDE. 913–924.
[32] Yang Liu, Chuan Zhou, Shirui Pan, Jia Wu, Zhao Li, Hongyang Chen, and Peng Zhang. 2023. CurvDrop: A Ricci

Curvature Based Approach to Prevent Graph Neural Networks from Over-Smoothing and Over-Squashing. In WWW.

ACM, 221–230.

[33] Peter Lofgren, Siddhartha Banerjee, and Ashish Goel. 2016. Personalized PageRank Estimation and Search: A Bidirec-

tional Approach. InWSDM. 163–172.

[34] Peter Lofgren and Ashish Goel. 2013. Personalized PageRank to a Target Node. CoRR abs/1304.4658 (2013).

arXiv:1304.4658 http://arxiv.org/abs/1304.4658

[35] Takanori Maehara, Takuya Akiba, Yoichi Iwata, and Ken-ichi Kawarabayashi. 2014. Computing Personalized PageRank

Quickly by Exploiting Graph Structures. VLDB 7, 12 (2014), 1023–1034.

[36] Shlomi Maliah, Rami Puzis, and Guy Shani. 2017. Shortest path tree sampling for landmark selection in large networks.

Journal of Complex Networks 5, 5 (2017), 795–815.
[37] Charalampos Mavroforakis, Richard Garcia-Lebron, Ioannis Koutis, and Evimaria Terzi. 2015. Spanning Edge Centrality:

Large-scale Computation and Applications. In WWW. 732–742.

[38] Luisa Micó, José Oncina, and Rafael C Carrasco. 1996. A fast branch & bound nearest neighbour classifier in metric

spaces. Pattern Recognition Letters 17, 7 (1996), 731–739.
[39] María Luisa Micó, José Oncina, and Enrique Vidal. 1994. A new version of the nearest-neighbour approximating and

eliminating search algorithm (AESA) with linear preprocessing time and memory requirements. Pattern Recognition
Letters 15, 1 (1994), 9–17.

[40] Abedelaziz Mohaisen, Aaram Yun, and Yongdae Kim. 2010. Measuring the mixing time of social graphs. In Proceedings
of the 10th ACM SIGCOMM conference on Internet measurement. 383–389.

[41] Dian Ouyang, Lu Qin, Lijun Chang, Xuemin Lin, Ying Zhang, and Qing Zhu. 2018. When hierarchy meets 2-hop-

labeling: Efficient shortest distance queries on road networks. In Proceedings of the 2018 International Conference on
Management of Data. 709–724.

[42] Pan Peng, Daniel Lopatta, Yuichi Yoshida, and Gramoz Goranci. 2021. Local Algorithms for Estimating Effective

Resistance. In KDD. 1329–1338.
[43] Jim Pitman and Wenpin Tang. 2018. Tree formulas, mean first passage times and Kemeny’s constant of a Markov

chain. (2018).

[44] Michalis Potamias, Francesco Bonchi, Carlos Castillo, and Aristides Gionis. 2009. Fast shortest path distance estimation

in large networks. In CIKM. 867–876.

[45] Purnamrita Sarkar, Andrew W. Moore, and Amit Prakash. 2008. Fast incremental proximity search in large graphs. In

ICML.
[46] Aaron Schild. 2018. An almost-linear time algorithm for uniform random spanning tree generation. In STOC. 214–227.
[47] Jieming Shi, Nikos Mamoulis, Dingming Wu, and David W. Cheung. 2014. Density-based place clustering in geo-social

networks. In SIGMOD. ACM, 99–110.

[48] Kijung Shin, Jinhong Jung, Lee Sael, and U Kang. 2015. BEAR: Block Elimination Approach for Random Walk with

Restart on Large Graphs. In SIGMOD, Timos K. Sellis, Susan B. Davidson, and Zachary G. Ives (Eds.). 1571–1585.

[49] Daniel A. Spielman and Nikhil Srivastava. 2008. Graph sparsification by effective resistances. In STOC. ACM, 563–568.

[50] Kumar Sricharan and Kamalika Das. 2014. Localizing anomalous changes in time-evolving graphs. In SIGMOD. ACM,

1347–1358.

[51] Prasad Tetali. 1991. Random walks and the effective resistance of networks. Journal of Theoretical Probability 4, 1

(1991), 101–109.

[52] Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M. Bronstein. 2022.

Understanding over-squashing and bottlenecks on graphs via curvature. In The Tenth International Conference on
Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.

[53] Konstantin Tretyakov, Abel Armas-Cervantes, Luciano García-Bañuelos, Jaak Vilo, and Marlon Dumas. 2011. Fast

fully dynamic landmark-based estimation of shortest path distances in very large graphs. In Proceedings of the 20th
ACM international conference on Information and knowledge management. 1785–1794.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 133. Publication date: June 2024.

https://arxiv.org/abs/1304.4658
http://arxiv.org/abs/1304.4658

Efficient and Provable Effective Resistance Computation on Large Graphs: an Index-based Approach 133:27

[54] Nimish Ukey, Zhengyi Yang, Binghao Li, Guangjian Zhang, Yiheng Hu, and Wenjie Zhang. 2023. Survey on exact knn

queries over high-dimensional data space. Sensors 23, 2 (2023), 629.
[55] Hanzhi Wang, Zhewei Wei, Junhao Gan, Sibo Wang, and Zengfeng Huang. 2020. Personalized PageRank to a Target

Node, Revisited. In KDD. 657–667.
[56] Sibo Wang, Youze Tang, Xiaokui Xiao, Yin Yang, and Zengxiang Li. 2016. HubPPR: Effective Indexing for Approximate

Personalized PageRank. VLDB 10, 3 (2016), 205–216.

[57] SiboWang and Yufei Tao. 2018. Efficient Algorithms for Finding Approximate Heavy Hitters in Personalized PageRanks.

In SIGMOD. 1113–1127.
[58] Sibo Wang, Renchi Yang, Xiaokui Xiao, Zhewei Wei, and Yin Yang. 2017. FORA: Simple and Effective Approximate

Single-Source Personalized PageRank. In KDD. 505–514.
[59] Zhewei Wei, Xiaodong He, Xiaokui Xiao, Sibo Wang, Shuo Shang, and Ji-Rong Wen. 2018. TopPPR: Top-k Personalized

PageRank Queries with Precision Guarantees on Large Graphs. In SIGMOD. 441–456.
[60] David Bruce Wilson. 1996. Generating random spanning trees more quickly than the cover time. In Proceedings of the

twenty-eighth annual ACM symposium on Theory of computing. 296–303.
[61] Hao Wu, Junhao Gan, Zhewei Wei, and Rui Zhang. 2021. Unifying the Global and Local Approaches: An Efficient

Power Iteration with Forward Push. In SIGMOD. 1996–2008.
[62] Renchi Yang and Jing Tang. 2023. Efficient Estimation of Pairwise Effective Resistance. Proc. ACM Manag. Data 1, 1

(2023), 16:1–16:27.

[63] Renchi Yang, Xiaokui Xiao, Zhewei Wei, Sourav S. Bhowmick, Jun Zhao, and Rong-Hua Li. 2019. Efficient Estimation

of Heat Kernel PageRank for Local Clustering. In SIGMOD. ACM, 1339–1356.

[64] Hongzhi Yin, Bin Cui, Jing Li, Junjie Yao, and Chen Chen. 2012. Challenging the Long Tail Recommendation. VLDB 5,

9 (2012), 896–907.

[65] Minji Yoon, Jinhong Jung, and U Kang. 2018. TPA: Fast, Scalable, and Accurate Method for Approximate Random

Walk with Restart on Billion Scale Graphs. In ICDE. 1132–1143.
[66] Junhua Zhang, Wentao Li, Long Yuan, Lu Qin, Ying Zhang, and Lijun Chang. 2022. Shortest-path queries on complex

networks: experiments, analyses, and improvement. VLDB 15, 11 (2022), 2640–2652.

[67] Shiqi Zhang, Renchi Yang, Jing Tang, Xiaokui Xiao, and Bo Tang. 2023. Efficient Approximation Algorithms for

Spanning Centrality. In KDD. ACM, 3386–3395.

Received October 2023; revised January 2024; accepted February 2024

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 133. Publication date: June 2024.

	Abstract
	1 Introduction
	2 Preliminaries
	3 New effective resistance formulas
	4 Single-pair ER Computation
	4.1 Index Construction Algorithms
	4.2 Query processing algorithms

	5 Single-source ER Computation
	5.1 Index Construction Algorithms
	5.2 Query processing algorithms

	6 Experiments
	6.1 Experimental Settings
	6.2 Results of Single-pair ER Computation
	6.3 Results of Single-source ER Computation
	6.4 Results of Various Landmark Selection Rules

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

